IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v559y2018i7712d10.1038_s41586-018-0226-8.html
   My bibliography  Save this article

A stromal cell population that inhibits adipogenesis in mammalian fat depots

Author

Listed:
  • Petra C. Schwalie

    (Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics)

  • Hua Dong

    (Eidgenössische Technische Hochschule Zürich)

  • Magda Zachara

    (Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics)

  • Julie Russeil

    (Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics)

  • Daniel Alpern

    (Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics)

  • Nassila Akchiche

    (Eidgenössische Technische Hochschule Zürich)

  • Christian Caprara

    (Swiss Stem Cell Foundation)

  • Wenfei Sun

    (Eidgenössische Technische Hochschule Zürich)

  • Kai-Uwe Schlaudraff

    (Concept-Clinic)

  • Gianni Soldati

    (Swiss Stem Cell Foundation)

  • Christian Wolfrum

    (Eidgenössische Technische Hochschule Zürich)

  • Bart Deplancke

    (Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics)

Abstract

Adipocyte development and differentiation have an important role in the aetiology of obesity and its co-morbidities1,2. Although multiple studies have investigated the adipogenic stem and precursor cells that give rise to mature adipocytes3–14, our understanding of their in vivo origin and properties is incomplete2,15,16. This is partially due to the highly heterogeneous and unstructured nature of adipose tissue depots17, which has proven difficult to molecularly dissect using classical approaches such as fluorescence-activated cell sorting and Cre–lox lines based on candidate marker genes16,18. Here, using the resolving power of single-cell transcriptomics19 in a mouse model, we reveal distinct subpopulations of adipose stem and precursor cells in the stromal vascular fraction of subcutaneous adipose tissue. We identify one of these subpopulations as CD142+ adipogenesis-regulatory cells, which can suppress adipocyte formation in vivo and in vitro in a paracrine manner. We show that adipogenesis-regulatory cells are refractory to adipogenesis and that they are functionally conserved in humans. Our findings point to a potentially critical role for adipogenesis-regulatory cells in modulating adipose tissue plasticity, which is linked to metabolic control, differential insulin sensitivity and type 2 diabetes.

Suggested Citation

  • Petra C. Schwalie & Hua Dong & Magda Zachara & Julie Russeil & Daniel Alpern & Nassila Akchiche & Christian Caprara & Wenfei Sun & Kai-Uwe Schlaudraff & Gianni Soldati & Christian Wolfrum & Bart Depla, 2018. "A stromal cell population that inhibits adipogenesis in mammalian fat depots," Nature, Nature, vol. 559(7712), pages 103-108, July.
  • Handle: RePEc:nat:nature:v:559:y:2018:i:7712:d:10.1038_s41586-018-0226-8
    DOI: 10.1038/s41586-018-0226-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0226-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0226-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucas Massier & Jutta Jalkanen & Merve Elmastas & Jiawei Zhong & Tongtong Wang & Pamela A. Nono Nankam & Scott Frendo-Cumbo & Jesper Bäckdahl & Narmadha Subramanian & Takuya Sekine & Alastair G. Kerr , 2023. "An integrated single cell and spatial transcriptomic map of human white adipose tissue," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Martin Uhrbom & Lars Muhl & Guillem Genové & Jianping Liu & Henrik Palmgren & Ida Alexandersson & Fredrik Karlsson & Alex-Xianghua Zhou & Sandra Lunnerdal & Sonja Gustafsson & Byambajav Buyandelger & , 2024. "Adipose stem cells are sexually dimorphic cells with dual roles as preadipocytes and resident fibroblasts," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    3. Shengnan Liu & Siyi Shen & Ying Yan & Chao Sun & Zhiqiang Lu & Hua Feng & Yiruo Ma & Zhili Tang & Jing Yu & Yuting Wu & Balázs Gereben & Petra Mohácsik & Csaba Fekete & Xiaoyun Feng & Feixiang Yuan & , 2022. "Triiodothyronine (T3) promotes brown fat hyperplasia via thyroid hormone receptor α mediated adipocyte progenitor cell proliferation," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Hongdong Wang & Yanhua Du & Shanshan Huang & Xitai Sun & Youqiong Ye & Haixiang Sun & Xuehui Chu & Xiaodong Shan & Yue Yuan & Lei Shen & Yan Bi, 2024. "Single-cell analysis reveals a subpopulation of adipose progenitor cells that impairs glucose homeostasis," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    5. Matthew C. Sinton & Praveena R. G. Chandrasegaran & Paul Capewell & Anneli Cooper & Alex Girard & John Ogunsola & Georgia Perona-Wright & Dieudonné M Ngoyi & Nono Kuispond & Bruno Bucheton & Mamadou C, 2023. "IL-17 signalling is critical for controlling subcutaneous adipose tissue dynamics and parasite burden during chronic murine Trypanosoma brucei infection," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    6. Fengfei Wu & Fangting Wu & Qian Zhou & Xi Liu & Jieying Fei & Da Zhang & Weidong Wang & Yi Tao & Yubing Lin & Qiaoqiao Lin & Xinghua Pan & Kai Sun & Fang Xie & Lan Bai, 2023. "A CCL2+DPP4+ subset of mesenchymal stem cells expedites aberrant formation of creeping fat in humans," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Urban Lendahl & Lars Muhl & Christer Betsholtz, 2022. "Identification, discrimination and heterogeneity of fibroblasts," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Nadège Gruel & Chloé Quignot & Laëtitia Lesage & Sophie El Zein & Sylvie Bonvalot & Dimitri Tzanis & Khadija Ait Rais & Fabien Quinquis & Bastien Manciot & Julien Vibert & Nadine El Tannir & Ahmed Dah, 2024. "Cellular origin and clonal evolution of human dedifferentiated liposarcoma," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:559:y:2018:i:7712:d:10.1038_s41586-018-0226-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.