IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v558y2018i7711d10.1038_s41586-018-0236-6.html
   My bibliography  Save this article

Structure of the adenosine-bound human adenosine A1 receptor–Gi complex

Author

Listed:
  • Christopher J. Draper-Joyce

    (Monash Institute of Pharmaceutical Sciences, Monash University)

  • Maryam Khoshouei

    (Max Planck Institute of Biochemistry
    Novartis Institutes for Biomedical Research, Novartis Pharma AG)

  • David M. Thal

    (Monash Institute of Pharmaceutical Sciences, Monash University)

  • Yi-Lynn Liang

    (Monash Institute of Pharmaceutical Sciences, Monash University)

  • Anh T. N. Nguyen

    (Monash Institute of Pharmaceutical Sciences, Monash University)

  • Sebastian G. B. Furness

    (Monash Institute of Pharmaceutical Sciences, Monash University)

  • Hariprasad Venugopal

    (Monash University, Clayton)

  • Jo-Anne Baltos

    (Monash Institute of Pharmaceutical Sciences, Monash University)

  • Jürgen M. Plitzko

    (Max Planck Institute of Biochemistry)

  • Radostin Danev

    (Max Planck Institute of Biochemistry)

  • Wolfgang Baumeister

    (Max Planck Institute of Biochemistry)

  • Lauren T. May

    (Monash Institute of Pharmaceutical Sciences, Monash University)

  • Denise Wootten

    (Monash Institute of Pharmaceutical Sciences, Monash University
    School of Pharmacy, Fudan University)

  • Patrick M. Sexton

    (Monash Institute of Pharmaceutical Sciences, Monash University
    School of Pharmacy, Fudan University)

  • Alisa Glukhova

    (Monash Institute of Pharmaceutical Sciences, Monash University)

  • Arthur Christopoulos

    (Monash Institute of Pharmaceutical Sciences, Monash University)

Abstract

The class A adenosine A1 receptor (A1R) is a G-protein-coupled receptor that preferentially couples to inhibitory Gi/o heterotrimeric G proteins, has been implicated in numerous diseases, yet remains poorly targeted. Here we report the 3.6 Å structure of the human A1R in complex with adenosine and heterotrimeric Gi2 protein determined by Volta phase plate cryo-electron microscopy. Compared to inactive A1R, there is contraction at the extracellular surface in the orthosteric binding site mediated via movement of transmembrane domains 1 and 2. At the intracellular surface, the G protein engages the A1R primarily via amino acids in the C terminus of the Gαi α5-helix, concomitant with a 10.5 Å outward movement of the A1R transmembrane domain 6. Comparison with the agonist-bound β2 adrenergic receptor–Gs-protein complex reveals distinct orientations for each G-protein subtype upon engagement with its receptor. This active A1R structure provides molecular insights into receptor and G-protein selectivity.

Suggested Citation

  • Christopher J. Draper-Joyce & Maryam Khoshouei & David M. Thal & Yi-Lynn Liang & Anh T. N. Nguyen & Sebastian G. B. Furness & Hariprasad Venugopal & Jo-Anne Baltos & Jürgen M. Plitzko & Radostin Danev, 2018. "Structure of the adenosine-bound human adenosine A1 receptor–Gi complex," Nature, Nature, vol. 558(7711), pages 559-563, June.
  • Handle: RePEc:nat:nature:v:558:y:2018:i:7711:d:10.1038_s41586-018-0236-6
    DOI: 10.1038/s41586-018-0236-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0236-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0236-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenli Zhao & Wenru Zhang & Mu Wang & Minmin Lu & Shutian Chen & Tingting Tang & Gisela Schnapp & Holger Wagner & Albert Brennauer & Cuiying Yi & Xiaojing Chu & Shuo Han & Beili Wu & Qiang Zhao, 2022. "Ligand recognition and activation of neuromedin U receptor 2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Mark J. Wall & Emily Hill & Robert Huckstepp & Kerry Barkan & Giuseppe Deganutti & Michele Leuenberger & Barbara Preti & Ian Winfield & Sabrina Carvalho & Anna Suchankova & Haifeng Wei & Dewi Safitri , 2022. "Selective activation of Gαob by an adenosine A1 receptor agonist elicits analgesia without cardiorespiratory depression," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    3. Andrew J. Y. Jones & Thomas H. Harman & Matthew Harris & Oliver E. Lewis & Graham Ladds & Daniel Nietlispach, 2024. "Binding kinetics drive G protein subtype selectivity at the β1-adrenergic receptor," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Manbir Sandhu & Aaron Cho & Ning Ma & Elizaveta Mukhaleva & Yoon Namkung & Sangbae Lee & Soumadwip Ghosh & John H. Lee & David E. Gloriam & Stéphane A. Laporte & M. Madan Babu & Nagarajan Vaidehi, 2022. "Dynamic spatiotemporal determinants modulate GPCR:G protein coupling selectivity and promiscuity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Yang Yang & Hye Jin Kang & Ruogu Gao & Jingjing Wang & Gye Won Han & Jeffrey F. DiBerto & Lijie Wu & Jiahui Tong & Lu Qu & Yiran Wu & Ryan Pileski & Xuemei Li & Xuejun Cai Zhang & Suwen Zhao & Terry K, 2023. "Structural insights into the human niacin receptor HCA2-Gi signalling complex," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Jinkang Shen & Dongqi Zhang & Yao Fu & Anqi Chen & Xiaoli Yang & Haitao Zhang, 2022. "Cryo-EM structures of human bradykinin receptor-Gq proteins complexes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Na Wang & Xinheng He & Jing Zhao & Hualiang Jiang & Xi Cheng & Yu Xia & H. Eric Xu & Yuanzheng He, 2022. "Structural basis of leukotriene B4 receptor 1 activation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Geng Chen & Jun Xu & Asuka Inoue & Maximilian F. Schmidt & Chen Bai & Qiuyuan Lu & Peter Gmeiner & Zheng Liu & Yang Du, 2022. "Activation and allosteric regulation of the orphan GPR88-Gi1 signaling complex," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Kevin M. Knight & Brian E. Krumm & Nicholas J. Kapolka & W. Grant Ludlam & Meng Cui & Sepehr Mani & Iya Prytkova & Elizabeth G. Obarow & Tyler J. Lefevre & Wenyuan Wei & Ning Ma & Xi-Ping Huang & Jona, 2024. "A neurodevelopmental disorder mutation locks G proteins in the transitory pre-activated state," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    10. Yan Chen & Qingtong Zhou & Jiang Wang & Youwei Xu & Yun Wang & Jiahui Yan & Yibing Wang & Qi Zhu & Fenghui Zhao & Chenghao Li & Chuan-Wei Chen & Xiaoqing Cai & Ross A .D. Bathgate & Chun Shen & H. Eri, 2023. "Ligand recognition mechanism of the human relaxin family peptide receptor 4 (RXFP4)," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:558:y:2018:i:7711:d:10.1038_s41586-018-0236-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.