IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v557y2018i7703d10.1038_s41586-018-0059-5.html
   My bibliography  Save this article

Deep mitochondrial origin outside the sampled alphaproteobacteria

Author

Listed:
  • Joran Martijn

    (Uppsala University)

  • Julian Vosseberg

    (Uppsala University
    Utrecht University)

  • Lionel Guy

    (Uppsala University)

  • Pierre Offre

    (Max Planck Institute for Marine Microbiology
    NIOZ Royal Netherlands Institute for Sea Research and Utrecht University)

  • Thijs J. G. Ettema

    (Uppsala University)

Abstract

Mitochondria are ATP-generating organelles, the endosymbiotic origin of which was a key event in the evolution of eukaryotic cells1. Despite strong phylogenetic evidence that mitochondria had an alphaproteobacterial ancestry2, efforts to pinpoint their closest relatives among sampled alphaproteobacteria have generated conflicting results, complicating detailed inferences about the identity and nature of the mitochondrial ancestor. While most studies support the idea that mitochondria evolved from an ancestor related to Rickettsiales3–9, an order that includes several host-associated pathogenic and endosymbiotic lineages10,11, others have suggested that mitochondria evolved from a free-living group12–14. Here we re-evaluate the phylogenetic placement of mitochondria. We used genome-resolved binning of oceanic metagenome datasets and increased the genomic sampling of Alphaproteobacteria with twelve divergent clades, and one clade representing a sister group to all Alphaproteobacteria. Subsequent phylogenomic analyses that specifically address long branch attraction and compositional bias artefacts suggest that mitochondria did not evolve from Rickettsiales or any other currently recognized alphaproteobacterial lineage. Rather, our analyses indicate that mitochondria evolved from a proteobacterial lineage that branched off before the divergence of all sampled alphaproteobacteria. In light of this new result, previous hypotheses on the nature of the mitochondrial ancestor6,15,16 should be re-evaluated.

Suggested Citation

  • Joran Martijn & Julian Vosseberg & Lionel Guy & Pierre Offre & Thijs J. G. Ettema, 2018. "Deep mitochondrial origin outside the sampled alphaproteobacteria," Nature, Nature, vol. 557(7703), pages 101-105, May.
  • Handle: RePEc:nat:nature:v:557:y:2018:i:7703:d:10.1038_s41586-018-0059-5
    DOI: 10.1038/s41586-018-0059-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0059-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0059-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tara A. Mahendrarajah & Edmund R. R. Moody & Dominik Schrempf & Lénárd L. Szánthó & Nina Dombrowski & Adrián A. Davín & Davide Pisani & Philip C. J. Donoghue & Gergely J. Szöllősi & Tom A. Williams & , 2023. "ATP synthase evolution on a cross-braced dated tree of life," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Abhijith Makki & Petr Rada & Vojtěch Žárský & Sami Kereïche & Lubomír Kováčik & Marian Novotný & Tobias Jores & Doron Rapaport & Jan Tachezy, 2019. "Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis," PLOS Biology, Public Library of Science, vol. 17(1), pages 1-32, January.
    3. Florent Waltz & Thalia Salinas-Giegé & Robert Englmeier & Herrade Meichel & Heddy Soufari & Lauriane Kuhn & Stefan Pfeffer & Friedrich Förster & Benjamin D. Engel & Philippe Giegé & Laurence Drouard &, 2021. "How to build a ribosome from RNA fragments in Chlamydomonas mitochondria," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. Zhongyi Lu & Runyue Xia & Siyu Zhang & Jie Pan & Yang Liu & Yuri I. Wolf & Eugene V. Koonin & Meng Li, 2024. "Evolution of optimal growth temperature in Asgard archaea inferred from the temperature dependence of GDP binding to EF-1A," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:557:y:2018:i:7703:d:10.1038_s41586-018-0059-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.