IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v551y2017i7679d10.1038_nature24638.html
   My bibliography  Save this article

Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis

Author

Listed:
  • Jeff A. Stogsdill

    (Duke University Medical Center)

  • Juan Ramirez

    (Duke University Medical Center)

  • Di Liu

    (Duke University Medical Center)

  • Yong Ho Kim

    (Duke University Medical Center)

  • Katherine T. Baldwin

    (Duke University Medical Center)

  • Eray Enustun

    (Duke University Medical Center)

  • Tiffany Ejikeme

    (Duke University Medical Center)

  • Ru-Rong Ji

    (Duke University Medical Center
    Duke University Medical Center
    Duke Institute for Brain Sciences (DIBS))

  • Cagla Eroglu

    (Duke University Medical Center
    Duke University Medical Center
    Duke Institute for Brain Sciences (DIBS))

Abstract

Astrocytes are complex glial cells with numerous fine cellular processes that infiltrate the neuropil and interact with synapses. The mechanisms that control the establishment of astrocyte morphology are unknown, and it is unclear whether impairing astrocytic infiltration of the neuropil alters synaptic connectivity. Here we show that astrocyte morphogenesis in the mouse cortex depends on direct contact with neuronal processes and occurs in parallel with the growth and activity of synaptic circuits. The neuroligin family cell adhesion proteins NL1, NL2, and NL3, which are expressed by cortical astrocytes, control astrocyte morphogenesis through interactions with neuronal neurexins. Furthermore, in the absence of astrocytic NL2, the formation and function of cortical excitatory synapses are diminished, whereas inhibitory synaptic function is enhanced. Our findings highlight a previously undescribed mechanism of action for neuroligins and link astrocyte morphogenesis to synaptogenesis. Because neuroligin mutations have been implicated in various neurological disorders, these findings also point towards an astrocyte-based mechanism of neural pathology.

Suggested Citation

  • Jeff A. Stogsdill & Juan Ramirez & Di Liu & Yong Ho Kim & Katherine T. Baldwin & Eray Enustun & Tiffany Ejikeme & Ru-Rong Ji & Cagla Eroglu, 2017. "Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis," Nature, Nature, vol. 551(7679), pages 192-197, November.
  • Handle: RePEc:nat:nature:v:551:y:2017:i:7679:d:10.1038_nature24638
    DOI: 10.1038/nature24638
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature24638
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature24638?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shijie Jin & Xuan Chen & Yang Tian & Rachel Jarvis & Vanessa Promes & Yongjie Yang, 2023. "Astroglial exosome HepaCAM signaling and ApoE antagonization coordinates early postnatal cortical pyramidal neuronal axon growth and dendritic spine formation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Hidenori Tabata & Megumi Sasaki & Masakazu Agetsuma & Hitomi Sano & Yuki Hirota & Michio Miyajima & Kanehiro Hayashi & Takao Honda & Masashi Nishikawa & Yutaka Inaguma & Hidenori Ito & Hirohide Takeba, 2022. "Erratic and blood vessel-guided migration of astrocyte progenitors in the cerebral cortex," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    3. Ken-ichi Dewa & Nariko Arimura & Wataru Kakegawa & Masayuki Itoh & Toma Adachi & Satoshi Miyashita & Yukiko U. Inoue & Kento Hizawa & Kei Hori & Natsumi Honjoya & Haruya Yagishita & Shinichiro Taya & , 2024. "Neuronal DSCAM regulates the peri-synaptic localization of GLAST in Bergmann glia for functional synapse formation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Mian Wang & Wanlu Li & Jin Hao & Arthur Gonzales & Zhibo Zhao & Regina Sanchez Flores & Xiao Kuang & Xuan Mu & Terry Ching & Guosheng Tang & Zeyu Luo & Carlos Ezio Garciamendez-Mijares & Jugal Kishore, 2022. "Molecularly cleavable bioinks facilitate high-performance digital light processing-based bioprinting of functional volumetric soft tissues," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:551:y:2017:i:7679:d:10.1038_nature24638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.