IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v548y2017i7668d10.1038_nature23447.html
   My bibliography  Save this article

Molecular magnetic hysteresis at 60 kelvin in dysprosocenium

Author

Listed:
  • Conrad A. P. Goodwin

    (School of Chemistry, The University of Manchester)

  • Fabrizio Ortu

    (School of Chemistry, The University of Manchester)

  • Daniel Reta

    (School of Chemistry, The University of Manchester)

  • Nicholas F. Chilton

    (School of Chemistry, The University of Manchester)

  • David P. Mills

    (School of Chemistry, The University of Manchester)

Abstract

Magnetic hysteresis is observed in a dysprosocenium complex at temperatures of up to 60 kelvin, the origin of which is the localized metal–ligand vibrational modes unique to dysprosocenium.

Suggested Citation

  • Conrad A. P. Goodwin & Fabrizio Ortu & Daniel Reta & Nicholas F. Chilton & David P. Mills, 2017. "Molecular magnetic hysteresis at 60 kelvin in dysprosocenium," Nature, Nature, vol. 548(7668), pages 439-442, August.
  • Handle: RePEc:nat:nature:v:548:y:2017:i:7668:d:10.1038_nature23447
    DOI: 10.1038/nature23447
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature23447
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature23447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Duan & Lorena E. Rosaleny & Joana T. Coutinho & Silvia Giménez-Santamarina & Allen Scheie & José J. Baldoví & Salvador Cardona-Serra & Alejandro Gaita-Ariño, 2022. "Data-driven design of molecular nanomagnets," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Andrea Mattioni & Jakob K. Staab & William J. A. Blackmore & Daniel Reta & Jake Iles-Smith & Ahsan Nazir & Nicholas F. Chilton, 2024. "Vibronic effects on the quantum tunnelling of magnetisation in Kramers single-molecule magnets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Tolulope Michael Ajayi & Vijay Singh & Kyaw Zin Latt & Sanjoy Sarkar & Xinyue Cheng & Sineth Premarathna & Naveen K. Dandu & Shaoze Wang & Fahimeh Movahedifar & Sarah Wieghold & Nozomi Shirato & Volke, 2022. "Atomically precise control of rotational dynamics in charged rare-earth complexes on a metal surface," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Diogo A. Gálico & Emille M. Rodrigues & Ilias Halimi & Juho Toivola & He Zhao & Jiahui Xu & Jani O. Moilanen & Xiaogang Liu & Eva Hemmer & Muralee Murugesu, 2024. "Confining single Er3+ ions in sub-3 nm NaYF4 nanoparticles to induce slow relaxation of the magnetisation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Michał Magott & Maria Brzozowska & Stanisław Baran & Veacheslav Vieru & Dawid Pinkowicz, 2022. "An intermetallic molecular nanomagnet with the lanthanide coordinated only by transition metals," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:548:y:2017:i:7668:d:10.1038_nature23447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.