IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29624-7.html
   My bibliography  Save this article

An intermetallic molecular nanomagnet with the lanthanide coordinated only by transition metals

Author

Listed:
  • Michał Magott

    (Jagiellonian University)

  • Maria Brzozowska

    (Jagiellonian University)

  • Stanisław Baran

    (Jagiellonian University)

  • Veacheslav Vieru

    (Maastricht University)

  • Dawid Pinkowicz

    (Jagiellonian University)

Abstract

Magnetic molecules known as molecular nanomagnets (MNMs) may be the key to ultra-high density data storage. Thus, novel strategies on how to design MNMs are desirable. Here, inspired by the hexagonal structure of the hardest intermetallic magnet SmCo5, we have synthesized a nanomagnetic molecule where the central lanthanide (Ln) ErIII is coordinated solely by three transition metal ions (TM) in a perfectly trigonal planar fashion. This intermetallic molecule [ErIII(ReICp2)3] (ErRe3) starts a family of molecular nanomagnets (MNM) with unsupported Ln-TM bonds and paves the way towards molecular intermetallics with strong direct magnetic exchange interactions—a promising route towards high-performance single-molecule magnets.

Suggested Citation

  • Michał Magott & Maria Brzozowska & Stanisław Baran & Veacheslav Vieru & Dawid Pinkowicz, 2022. "An intermetallic molecular nanomagnet with the lanthanide coordinated only by transition metals," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29624-7
    DOI: 10.1038/s41467-022-29624-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29624-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29624-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jing Liu & Jie Li & Zhen Xu & Xiong Zhou & Qiang Xue & Tianhao Wu & Mingjun Zhong & Ruoning Li & Rong Sun & Ziyong Shen & Hao Tang & Song Gao & Bingwu Wang & Shimin Hou & Yongfeng Wang, 2021. "On-surface preparation of coordinated lanthanide-transition-metal clusters," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Conrad A. P. Goodwin & Fabrizio Ortu & Daniel Reta & Nicholas F. Chilton & David P. Mills, 2017. "Molecular magnetic hysteresis at 60 kelvin in dysprosocenium," Nature, Nature, vol. 548(7668), pages 439-442, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingbo Xing & Jie Li & Yuchen Bai & Yuxuan Lin & Lianghong Xiao & Changlin Li & Dahui Zhao & Yongfeng Wang & Qiwei Chen & Jing Liu & Kai Wu, 2024. "Surface-confined alternating copolymerization with molecular precision by stoichiometric control," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Diogo A. Gálico & Emille M. Rodrigues & Ilias Halimi & Juho Toivola & He Zhao & Jiahui Xu & Jani O. Moilanen & Xiaogang Liu & Eva Hemmer & Muralee Murugesu, 2024. "Confining single Er3+ ions in sub-3 nm NaYF4 nanoparticles to induce slow relaxation of the magnetisation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Tolulope Michael Ajayi & Vijay Singh & Kyaw Zin Latt & Sanjoy Sarkar & Xinyue Cheng & Sineth Premarathna & Naveen K. Dandu & Shaoze Wang & Fahimeh Movahedifar & Sarah Wieghold & Nozomi Shirato & Volke, 2022. "Atomically precise control of rotational dynamics in charged rare-earth complexes on a metal surface," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Andrea Mattioni & Jakob K. Staab & William J. A. Blackmore & Daniel Reta & Jake Iles-Smith & Ahsan Nazir & Nicholas F. Chilton, 2024. "Vibronic effects on the quantum tunnelling of magnetisation in Kramers single-molecule magnets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Yan Duan & Lorena E. Rosaleny & Joana T. Coutinho & Silvia Giménez-Santamarina & Allen Scheie & José J. Baldoví & Salvador Cardona-Serra & Alejandro Gaita-Ariño, 2022. "Data-driven design of molecular nanomagnets," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29624-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.