IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v542y2017i7642d10.1038_nature21055.html
   My bibliography  Save this article

Ancestral morphology of crown-group molluscs revealed by a new Ordovician stem aculiferan

Author

Listed:
  • Jakob Vinther

    (School of Biological Sciences, University of Bristol
    School of Earth Sciences, University of Bristol)

  • Luke Parry

    (School of Biological Sciences, University of Bristol
    The Natural History Museum)

  • Derek E. G. Briggs

    (Yale University
    Yale Peabody Museum of Natural History)

  • Peter Van Roy

    (Yale University
    Ghent University)

Abstract

Presence of a radula in Calvapilosa kroegeri confirms the molluscan affinity of sachitids, and the single shell plate reveals the ancestral condition for all crown molluscs and early evolution of the multi-plated body plan characteristic of Aculifera.

Suggested Citation

  • Jakob Vinther & Luke Parry & Derek E. G. Briggs & Peter Van Roy, 2017. "Ancestral morphology of crown-group molluscs revealed by a new Ordovician stem aculiferan," Nature, Nature, vol. 542(7642), pages 471-474, February.
  • Handle: RePEc:nat:nature:v:542:y:2017:i:7642:d:10.1038_nature21055
    DOI: 10.1038/nature21055
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature21055
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature21055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lorenzo Lustri & Pierre Gueriau & Allison C. Daley, 2024. "Lower Ordovician synziphosurine reveals early euchelicerate diversity and evolution," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:542:y:2017:i:7642:d:10.1038_nature21055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.