IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v541y2017i7635d10.1038_nature20775.html
   My bibliography  Save this article

Structural basis for gating the high-conductance Ca2+-activated K+ channel

Author

Listed:
  • Richard K. Hite

    (Rockefeller University and Howard Hughes Medical Institute)

  • Xiao Tao

    (Rockefeller University and Howard Hughes Medical Institute)

  • Roderick MacKinnon

    (Rockefeller University and Howard Hughes Medical Institute)

Abstract

The precise control of an ion channel gate by environmental stimuli is crucial for the fulfilment of its biological role. The gate in Slo1 K+ channels is regulated by two separate stimuli, intracellular Ca2+ concentration and membrane voltage. Slo1 is thus central to understanding the relationship between intracellular Ca2+ and membrane excitability. Here we present the Slo1 structure from Aplysia californica in the absence of Ca2+ and compare it with the Ca2+-bound channel. We show that Ca2+ binding at two unique binding sites per subunit stabilizes an expanded conformation of the Ca2+ sensor gating ring. These conformational changes are propagated from the gating ring to the pore through covalent linkers and through protein interfaces formed between the gating ring and the voltage sensors. The gating ring and the voltage sensors are directly connected through these interfaces, which allow membrane voltage to regulate gating of the pore by influencing the Ca2+ sensors.

Suggested Citation

  • Richard K. Hite & Xiao Tao & Roderick MacKinnon, 2017. "Structural basis for gating the high-conductance Ca2+-activated K+ channel," Nature, Nature, vol. 541(7635), pages 52-57, January.
  • Handle: RePEc:nat:nature:v:541:y:2017:i:7635:d:10.1038_nature20775
    DOI: 10.1038/nature20775
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature20775
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature20775?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tobias Raisch & Andreas Brockmann & Ulrich Ebbinghaus-Kintscher & Jörg Freigang & Oliver Gutbrod & Jan Kubicek & Barbara Maertens & Oliver Hofnagel & Stefan Raunser, 2021. "Small molecule modulation of the Drosophila Slo channel elucidated by cryo-EM," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Navid Paknejad & Vinay Sapuru & Richard K. Hite, 2023. "Structural titration reveals Ca2+-dependent conformational landscape of the IP3 receptor," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Guohui Zhang & Xianjin Xu & Zhiguang Jia & Yanyan Geng & Hongwu Liang & Jingyi Shi & Martina Marras & Carlota Abella & Karl L. Magleby & Jonathan R. Silva & Jianhan Chen & Xiaoqin Zou & Jianmin Cui, 2022. "An allosteric modulator activates BK channels by perturbing coupling between Ca2+ binding and pore opening," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Ruo-Xu Gu & Bert L. Groot, 2023. "Central cavity dehydration as a gating mechanism of potassium channels," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:541:y:2017:i:7635:d:10.1038_nature20775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.