Neuromodulators signal through astrocytes to alter neural circuit activity and behaviour
Author
Abstract
Suggested Citation
DOI: 10.1038/nature20145
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lan Pang & Zhiguo Liu & Jiani Chen & Zhi Dong & Sicong Zhou & Qichao Zhang & Yueqi Lu & Yifeng Sheng & Xuexin Chen & Jianhua Huang, 2022. "Search performance and octopamine neuronal signaling mediate parasitoid induced changes in Drosophila oviposition behavior," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
- Nicole Pogodalla & Holger Kranenburg & Simone Rey & Silke Rodrigues & Albert Cardona & Christian Klämbt, 2021. "Drosophila ßHeavy-Spectrin is required in polarized ensheathing glia that form a diffusion-barrier around the neuropil," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
- Fushun Wang & Wei Wang & Simeng Gu & Dan Qi & Nathan A. Smith & Weiguo Peng & Wei Dong & Jiajin Yuan & Binbin Zhao & Ying Mao & Peng Cao & Qing Richard Lu & Lee A. Shapiro & S. Stephen Yi & Erxi Wu & , 2023. "Distinct astrocytic modulatory roles in sensory transmission during sleep, wakefulness, and arousal states in freely moving mice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Paula Gómez-Sotres & Urszula Skupio & Tommaso Dalla Tor & Francisca Julio-Kalajzic & Astrid Cannich & Doriane Gisquet & Itziar Bonilla-Del Rio & Filippo Drago & Nagore Puente & Pedro Grandes & Luigi B, 2024. "Olfactory bulb astrocytes link social transmission of stress to cognitive adaptation in male mice," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
- Valentina Botero & Bethany A. Stanhope & Elizabeth B. Brown & Eliza C. Grenci & Tamara Boto & Scarlet J. Park & Lanikea B. King & Keith R. Murphy & Kenneth J. Colodner & James A. Walker & Alex C. Keen, 2021. "Neurofibromin regulates metabolic rate via neuronal mechanisms in Drosophila," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:539:y:2016:i:7629:d:10.1038_nature20145. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.