IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v537y2016i7619d10.1038_nature19334.html
   My bibliography  Save this article

Germinal centre hypoxia and regulation of antibody qualities by a hypoxia response system

Author

Listed:
  • Sung Hoon Cho

    (Microbiology and Immunology, Vanderbilt University)

  • Ariel L. Raybuck

    (Microbiology and Immunology, Vanderbilt University)

  • Kristy Stengel

    (Vanderbilt University)

  • Mei Wei

    (Microbiology and Immunology, Vanderbilt University)

  • Thomas C. Beck

    (Microbiology and Immunology, Vanderbilt University)

  • Emmanuel Volanakis

    (Vanderbilt University)

  • James W. Thomas

    (Microbiology and Immunology, Vanderbilt University
    Vanderbilt University)

  • Scott Hiebert

    (Vanderbilt University
    Vanderbilt University
    Vanderbilt-Ingram Cancer Center, Vanderbilt University)

  • Volker H. Haase

    (Vanderbilt University
    Vanderbilt University
    Vanderbilt-Ingram Cancer Center, Vanderbilt University
    Medical and Research Services, Tennessee Valley Healthcare System)

  • Mark R. Boothby

    (Microbiology and Immunology, Vanderbilt University
    Vanderbilt University
    Vanderbilt University
    Vanderbilt-Ingram Cancer Center, Vanderbilt University)

Abstract

Hypoxia in germinal centres regulates B cell class switching via its effects on mTOR complex 1 and activation-induced cytosine deaminase activity.

Suggested Citation

  • Sung Hoon Cho & Ariel L. Raybuck & Kristy Stengel & Mei Wei & Thomas C. Beck & Emmanuel Volanakis & James W. Thomas & Scott Hiebert & Volker H. Haase & Mark R. Boothby, 2016. "Germinal centre hypoxia and regulation of antibody qualities by a hypoxia response system," Nature, Nature, vol. 537(7619), pages 234-238, September.
  • Handle: RePEc:nat:nature:v:537:y:2016:i:7619:d:10.1038_nature19334
    DOI: 10.1038/nature19334
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature19334
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature19334?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongxing Shen & Oluwagbemiga A. Ojo & Haitao Ding & Logan J. Mullen & Chuan Xing & M. Iqbal Hossain & Abdelrahman Yassin & Vivian Y. Shi & Zach Lewis & Ewa Podgorska & Shaida A. Andrabi & Maciek R. An, 2024. "HIF1α-regulated glycolysis promotes activation-induced cell death and IFN-γ induction in hypoxic T cells," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Sophie Hillion & Anjelica Miranda & Christelle Dantec & Marina Boudigou & Laëtitia Pottier & Divi Cornec & Raul M. Torres & Roberta Pelanda, 2024. "Maf expression in B cells restricts reactive plasmablast and germinal center B cell expansion," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Wenna Chi & Na Kang & Linlin Sheng & Sichen Liu & Lei Tao & Xizhi Cao & Ye Liu & Can Zhu & Yuming Zhang & Bolong Wu & Ruiqun Chen & Lili Cheng & Jing Wang & Xiaolin Sun & Xiaohui Liu & Haiteng Deng & , 2024. "MCT1-governed pyruvate metabolism is essential for antibody class-switch recombination through H3K27 acetylation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Bonnie Huang & James D. Phelan & Silvia Preite & Julio Gomez-Rodriguez & Kristoffer H. Johansen & Hirofumi Shibata & Arthur L. Shaffer & Qin Xu & Brendan Jeffrey & Martha Kirby & Stacie Anderson & Yan, 2022. "In vivo CRISPR screens reveal a HIF-1α-mTOR-network regulates T follicular helper versus Th1 cells," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Rens Peeters & Jorge Cuenca-Escalona & Esther A. Zaal & Anna T. Hoekstra & Anouk C. G. Balvert & Marcos Vidal-Manrique & Niek Blomberg & Sjoerd J. Deventer & Rinke Stienstra & Julia Jellusova & Martin, 2022. "Fatty acid metabolism in aggressive B-cell lymphoma is inhibited by tetraspanin CD37," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Marta Iborra-Pernichi & Jonathan Ruiz García & María Velasco de la Esperanza & Belén S. Estrada & Elena R. Bovolenta & Claudia Cifuentes & Cristina Prieto Carro & Tamara González Martínez & José Garcí, 2024. "Defective mitochondria remodelling in B cells leads to an aged immune response," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:537:y:2016:i:7619:d:10.1038_nature19334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.