IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v537y2016i7618d10.1038_nature19323.html
   My bibliography  Save this article

The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease

Author

Listed:
  • Jeff Sevigny

    (Biogen)

  • Ping Chiao

    (Biogen)

  • Thierry Bussière

    (Biogen)

  • Paul H. Weinreb

    (Biogen)

  • Leslie Williams

    (Biogen)

  • Marcel Maier

    (Neurimmune)

  • Robert Dunstan

    (Biogen)

  • Stephen Salloway

    (Butler Hospital, Providence)

  • Tianle Chen

    (Biogen)

  • Yan Ling

    (Biogen)

  • John O’Gorman

    (Biogen)

  • Fang Qian

    (Biogen)

  • Mahin Arastu

    (Biogen)

  • Mingwei Li

    (Biogen)

  • Sowmya Chollate

    (Biogen)

  • Melanie S. Brennan

    (Biogen)

  • Omar Quintero-Monzon

    (Biogen)

  • Robert H. Scannevin

    (Biogen)

  • H. Moore Arnold

    (Biogen)

  • Thomas Engber

    (Biogen)

  • Kenneth Rhodes

    (Biogen)

  • James Ferrero

    (Biogen)

  • Yaming Hang

    (Biogen)

  • Alvydas Mikulskis

    (Biogen)

  • Jan Grimm

    (Neurimmune)

  • Christoph Hock

    (Neurimmune
    Institute for Regenerative Medicine, University of Zurich)

  • Roger M. Nitsch

    (Neurimmune
    Institute for Regenerative Medicine, University of Zurich)

  • Alfred Sandrock

    (Biogen)

Abstract

Alzheimer’s disease (AD) is characterized by deposition of amyloid-β (Aβ) plaques and neurofibrillary tangles in the brain, accompanied by synaptic dysfunction and neurodegeneration. Antibody-based immunotherapy against Aβ to trigger its clearance or mitigate its neurotoxicity has so far been unsuccessful. Here we report the generation of aducanumab, a human monoclonal antibody that selectively targets aggregated Aβ. In a transgenic mouse model of AD, aducanumab is shown to enter the brain, bind parenchymal Aβ, and reduce soluble and insoluble Aβ in a dose-dependent manner. In patients with prodromal or mild AD, one year of monthly intravenous infusions of aducanumab reduces brain Aβ in a dose- and time-dependent manner. This is accompanied by a slowing of clinical decline measured by Clinical Dementia Rating—Sum of Boxes and Mini Mental State Examination scores. The main safety and tolerability findings are amyloid-related imaging abnormalities. These results justify further development of aducanumab for the treatment of AD. Should the slowing of clinical decline be confirmed in ongoing phase 3 clinical trials, it would provide compelling support for the amyloid hypothesis.

Suggested Citation

  • Jeff Sevigny & Ping Chiao & Thierry Bussière & Paul H. Weinreb & Leslie Williams & Marcel Maier & Robert Dunstan & Stephen Salloway & Tianle Chen & Yan Ling & John O’Gorman & Fang Qian & Mahin Arastu , 2016. "The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease," Nature, Nature, vol. 537(7618), pages 50-56, September.
  • Handle: RePEc:nat:nature:v:537:y:2016:i:7618:d:10.1038_nature19323
    DOI: 10.1038/nature19323
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature19323
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature19323?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiuhua Yin & Hong Zhou & Mengling Zhang & Juan Su & Xiao Wang & Sijie Li & Zaixing Yang & Zhenhui Kang & Ruhong Zhou, 2023. "C3N nanodots inhibits Aβ peptides aggregation pathogenic path in Alzheimer’s disease," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Fabian Wirth & Fabrice D. Heitz & Christine Seeger & Ioana Combaluzier & Karin Breu & Heather C. Denroche & Julien Thevenet & Melania Osto & Paolo Arosio & Julie Kerr-Conte & C. Bruce Verchere & Franç, 2023. "A human antibody against pathologic IAPP aggregates protects beta cells in type 2 diabetes models," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Jusung An & Kyeonghwan Kim & Ho Jae Lim & Hye Yun Kim & Jinwoo Shin & InWook Park & Illhwan Cho & Hyeong Yun Kim & Sunghoon Kim & Catriona McLean & Kyu Yeong Choi & YoungSoo Kim & Kun Ho Lee & Jong Se, 2024. "Early onset diagnosis in Alzheimer’s disease patients via amyloid-β oligomers-sensing probe in cerebrospinal fluid," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Jiyeon Lee & Haeryung Lee & Hyein Lee & Miram Shin & Min-Gi Shin & Jinsoo Seo & Eun Jeong Lee & Sun Ah Park & Soochul Park, 2023. "ANKS1A regulates LDL receptor-related protein 1 (LRP1)-mediated cerebrovascular clearance in brain endothelial cells," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    5. Sheng Chen & Anuradhika Puri & Braxton Bell & Joseph Fritsche & Hector H. Palacios & Maurie Balch & Macy L. Sprunger & Matthew K. Howard & Jeremy J. Ryan & Jessica N. Haines & Gary J. Patti & Albert A, 2024. "HTRA1 disaggregates α-synuclein amyloid fibrils and converts them into non-toxic and seeding incompetent species," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Li, Huixia & Zhao, Hongyong, 2022. "Mathematical model of Alzheimer’s disease with prion proteins interactions and treatment," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    7. Yuwen Chen & Haoyu Yang & Yan Luo & Yijun Niu & Muzhou Yu & Shanjun Deng & Xuanhao Wang & Handi Deng & Haichao Chen & Lixia Gao & Xinjian Li & Pingyong Xu & Fudong Xue & Jing Miao & Song-Hai Shi & Yi , 2024. "Photoacoustic Tomography with Temporal Encoding Reconstruction (PATTERN) for cross-modal individual analysis of the whole brain," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Shangran Qiu & Matthew I. Miller & Prajakta S. Joshi & Joyce C. Lee & Chonghua Xue & Yunruo Ni & Yuwei Wang & Ileana Anda-Duran & Phillip H. Hwang & Justin A. Cramer & Brigid C. Dwyer & Honglin Hao & , 2022. "Multimodal deep learning for Alzheimer’s disease dementia assessment," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Byung Jo Choi & Min Hee Park & Kang Ho Park & Wan Hui Han & Hee Ji Yoon & Hye Yoon Jung & Ju Yeon Hong & Md Riad Chowdhury & Kyung Yeol Kim & Jihoon Lee & Im-Sook Song & Minyeong Pang & Min-Koo Choi &, 2023. "Immunotherapy targeting plasma ASM is protective in a mouse model of Alzheimer’s disease," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:537:y:2016:i:7618:d:10.1038_nature19323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.