IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-44818-x.html
   My bibliography  Save this article

Early onset diagnosis in Alzheimer’s disease patients via amyloid-β oligomers-sensing probe in cerebrospinal fluid

Author

Listed:
  • Jusung An

    (Korea University)

  • Kyeonghwan Kim

    (Yonsei University
    Yonsei University)

  • Ho Jae Lim

    (Chosun University)

  • Hye Yun Kim

    (Yonsei University
    Yonsei University)

  • Jinwoo Shin

    (Korea University)

  • InWook Park

    (Yonsei University
    Yonsei University)

  • Illhwan Cho

    (Yonsei University
    Yonsei University)

  • Hyeong Yun Kim

    (Yonsei University)

  • Sunghoon Kim

    (Yonsei University
    Yonsei University
    Yonsei University)

  • Catriona McLean

    (The Alfred Hospital)

  • Kyu Yeong Choi

    (Chosun University)

  • YoungSoo Kim

    (Yonsei University
    Yonsei University)

  • Kun Ho Lee

    (Chosun University
    Chosun University
    Korea Brain Research Institute)

  • Jong Seung Kim

    (Korea University
    TheranoChem Incorporation, Seongbuk-gu)

Abstract

Amyloid-β (Aβ) oligomers are implicated in the onset of Alzheimer’s disease (AD). Herein, quinoline-derived half-curcumin-dioxaborine (Q-OB) fluorescent probe was designed for detecting Aβ oligomers by finely tailoring the hydrophobicity of the biannulate donor motifs in donor-π-acceptor structure. Q-OB shows a great sensing potency in dynamically monitoring oligomerization of Aβ during amyloid fibrillogenesis in vitro. In addition, we applied this strategy to fluorometrically analyze Aβ self-assembly kinetics in the cerebrospinal fluids (CSF) of AD patients. The fluorescence intensity of Q-OB in AD patients’ CSF revealed a marked change of log (I/I0) value of 0.34 ± 0.13 (cognitive normal), 0.15 ± 0.12 (mild cognitive impairment), and 0.14 ± 0.10 (AD dementia), guiding to distinguish a state of AD continuum for early diagnosis of AD. These studies demonstrate the potential of our approach can expand the currently available preclinical diagnostic platform for the early stages of AD, aiding in the disruption of pathological progression and the development of appropriate treatment strategies.

Suggested Citation

  • Jusung An & Kyeonghwan Kim & Ho Jae Lim & Hye Yun Kim & Jinwoo Shin & InWook Park & Illhwan Cho & Hyeong Yun Kim & Sunghoon Kim & Catriona McLean & Kyu Yeong Choi & YoungSoo Kim & Kun Ho Lee & Jong Se, 2024. "Early onset diagnosis in Alzheimer’s disease patients via amyloid-β oligomers-sensing probe in cerebrospinal fluid," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44818-x
    DOI: 10.1038/s41467-024-44818-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-44818-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-44818-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeff Sevigny & Ping Chiao & Thierry Bussière & Paul H. Weinreb & Leslie Williams & Marcel Maier & Robert Dunstan & Stephen Salloway & Tianle Chen & Yan Ling & John O’Gorman & Fang Qian & Mahin Arastu , 2016. "The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease," Nature, Nature, vol. 537(7618), pages 50-56, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byung Jo Choi & Min Hee Park & Kang Ho Park & Wan Hui Han & Hee Ji Yoon & Hye Yoon Jung & Ju Yeon Hong & Md Riad Chowdhury & Kyung Yeol Kim & Jihoon Lee & Im-Sook Song & Minyeong Pang & Min-Koo Choi &, 2023. "Immunotherapy targeting plasma ASM is protective in a mouse model of Alzheimer’s disease," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Fabian Wirth & Fabrice D. Heitz & Christine Seeger & Ioana Combaluzier & Karin Breu & Heather C. Denroche & Julien Thevenet & Melania Osto & Paolo Arosio & Julie Kerr-Conte & C. Bruce Verchere & Franç, 2023. "A human antibody against pathologic IAPP aggregates protects beta cells in type 2 diabetes models," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Sheng Chen & Anuradhika Puri & Braxton Bell & Joseph Fritsche & Hector H. Palacios & Maurie Balch & Macy L. Sprunger & Matthew K. Howard & Jeremy J. Ryan & Jessica N. Haines & Gary J. Patti & Albert A, 2024. "HTRA1 disaggregates α-synuclein amyloid fibrils and converts them into non-toxic and seeding incompetent species," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Shangran Qiu & Matthew I. Miller & Prajakta S. Joshi & Joyce C. Lee & Chonghua Xue & Yunruo Ni & Yuwei Wang & Ileana Anda-Duran & Phillip H. Hwang & Justin A. Cramer & Brigid C. Dwyer & Honglin Hao & , 2022. "Multimodal deep learning for Alzheimer’s disease dementia assessment," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Yuwen Chen & Haoyu Yang & Yan Luo & Yijun Niu & Muzhou Yu & Shanjun Deng & Xuanhao Wang & Handi Deng & Haichao Chen & Lixia Gao & Xinjian Li & Pingyong Xu & Fudong Xue & Jing Miao & Song-Hai Shi & Yi , 2024. "Photoacoustic Tomography with Temporal Encoding Reconstruction (PATTERN) for cross-modal individual analysis of the whole brain," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Xiuhua Yin & Hong Zhou & Mengling Zhang & Juan Su & Xiao Wang & Sijie Li & Zaixing Yang & Zhenhui Kang & Ruhong Zhou, 2023. "C3N nanodots inhibits Aβ peptides aggregation pathogenic path in Alzheimer’s disease," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Li, Huixia & Zhao, Hongyong, 2022. "Mathematical model of Alzheimer’s disease with prion proteins interactions and treatment," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    8. Jiyeon Lee & Haeryung Lee & Hyein Lee & Miram Shin & Min-Gi Shin & Jinsoo Seo & Eun Jeong Lee & Sun Ah Park & Soochul Park, 2023. "ANKS1A regulates LDL receptor-related protein 1 (LRP1)-mediated cerebrovascular clearance in brain endothelial cells," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44818-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.