IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v534y2016i7608d10.1038_nature17968.html
   My bibliography  Save this article

Abiological catalysis by artificial haem proteins containing noble metals in place of iron

Author

Listed:
  • Hanna M. Key

    (University of California
    Lawrence Berkeley National Laboratory)

  • Paweł Dydio

    (University of California
    Lawrence Berkeley National Laboratory)

  • Douglas S. Clark

    (University of California
    Lawrence Berkeley National Laboratory)

  • John F. Hartwig

    (University of California
    Lawrence Berkeley National Laboratory)

Abstract

Replacing the iron atom in Fe-porphyrin IX proteins with a noble-metal atom enables the creation of enzymes that catalyse reactions not catalysed by native Fe-enzymes or other metalloenzymes; this approach could be used to generate other artificial enzymes that could catalyse a wide range of abiological transformations.

Suggested Citation

  • Hanna M. Key & Paweł Dydio & Douglas S. Clark & John F. Hartwig, 2016. "Abiological catalysis by artificial haem proteins containing noble metals in place of iron," Nature, Nature, vol. 534(7608), pages 534-537, June.
  • Handle: RePEc:nat:nature:v:534:y:2016:i:7608:d:10.1038_nature17968
    DOI: 10.1038/nature17968
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature17968
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature17968?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sirong Li & Zijun Zhou & Zuoxiu Tie & Bing Wang & Meng Ye & Lei Du & Ran Cui & Wei Liu & Cuihong Wan & Quanyi Liu & Sheng Zhao & Quan Wang & Yihong Zhang & Shuo Zhang & Huigang Zhang & Yan Du & Hui We, 2022. "Data-informed discovery of hydrolytic nanozymes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Simon L. Dürr & Andrea Levy & Ursula Rothlisberger, 2023. "Metal3D: a general deep learning framework for accurate metal ion location prediction in proteins," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:534:y:2016:i:7608:d:10.1038_nature17968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.