IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v532y2016i7600d10.1038_nature17401.html
   My bibliography  Save this article

Bubble accumulation and its role in the evolution of magma reservoirs in the upper crust

Author

Listed:
  • A. Parmigiani

    (Institute of Geochemistry and Petrology
    School of Earth and Atmospheric Sciences, Georgia Institute of Technology)

  • S. Faroughi

    (School of Earth and Atmospheric Sciences, Georgia Institute of Technology
    School of Civil and Environmental Engineering, Georgia Institute of Technology)

  • C. Huber

    (School of Earth and Atmospheric Sciences, Georgia Institute of Technology
    School of Civil and Environmental Engineering, Georgia Institute of Technology)

  • O. Bachmann

    (Institute of Geochemistry and Petrology)

  • Y. Su

    (School of Earth and Atmospheric Sciences, Georgia Institute of Technology)

Abstract

Here, the authors model the fluid dynamics that controls the transport of the magmatic volatile phase (MVP) in crystal-rich and crystal-poor magmas; they find that the MVP tends to migrate efficiently in crystal-rich parts of a magma reservoir but to accumulate in crystal-poor parts—possibly explaining why crystal-poor silicic magmas are particularly prone to erupting.

Suggested Citation

  • A. Parmigiani & S. Faroughi & C. Huber & O. Bachmann & Y. Su, 2016. "Bubble accumulation and its role in the evolution of magma reservoirs in the upper crust," Nature, Nature, vol. 532(7600), pages 492-495, April.
  • Handle: RePEc:nat:nature:v:532:y:2016:i:7600:d:10.1038_nature17401
    DOI: 10.1038/nature17401
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature17401
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature17401?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dawang Zhang & James M. Campbell & Jon A. Eriksen & Eirik G. Flekkøy & Knut Jørgen Måløy & Christopher W. MacMinn & Bjørnar Sandnes, 2023. "Frictional fluid instabilities shaped by viscous forces," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Shen, Zhongjie & Zhou, Jie & Liu, Xia & Liang, Qinfeng & Liu, Haifeng, 2020. "A deep insight on the correlation between slag viscosity fluctuation and decomposition of sulfur-bearing minerals in the entrained flow gasifier," Energy, Elsevier, vol. 196(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:532:y:2016:i:7600:d:10.1038_nature17401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.