IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v531y2016i7592d10.1038_nature16988.html
   My bibliography  Save this article

Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer

Author

Listed:
  • Alexandra C. Walls

    (University of Washington)

  • M. Alejandra Tortorici

    (Institut Pasteur, Unité de Virologie
    CNRS UMR)

  • Berend-Jan Bosch

    (Faculty of Veterinary Medicine, Utrecht University)

  • Brandon Frenz

    (University of Washington)

  • Peter J. M. Rottier

    (Faculty of Veterinary Medicine, Utrecht University)

  • Frank DiMaio

    (University of Washington)

  • Félix A. Rey

    (Institut Pasteur, Unité de Virologie
    CNRS UMR)

  • David Veesler

    (University of Washington)

Abstract

The high-resolution cryo-electron microscopy structure of a pre-fusion coronavirus spike trimer from mouse hepatitis virus is presented; the structure reveals architectural similarities to paramyxovirus F proteins, suggesting that these fusion proteins may have evolved from a distant common ancestor.

Suggested Citation

  • Alexandra C. Walls & M. Alejandra Tortorici & Berend-Jan Bosch & Brandon Frenz & Peter J. M. Rottier & Frank DiMaio & Félix A. Rey & David Veesler, 2016. "Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer," Nature, Nature, vol. 531(7592), pages 114-117, March.
  • Handle: RePEc:nat:nature:v:531:y:2016:i:7592:d:10.1038_nature16988
    DOI: 10.1038/nature16988
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature16988
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature16988?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tugba Taskin Tok & Sivakumar J T Gowder, 2020. "An Updated Review on Covid-19 with Special Reference to Structural Elucidation and Functional Properties," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 31(4), pages 24345-24351, November.
    2. Wenjuan Du & Oliver Debski-Antoniak & Dubravka Drabek & Rien Haperen & Melissa Dortmondt & Joline Lee & Ieva Drulyte & Frank J. M. Kuppeveld & Frank Grosveld & Daniel L. Hurdiss & Berend-Jan Bosch, 2024. "Neutralizing antibodies reveal cryptic vulnerabilities and interdomain crosstalk in the porcine deltacoronavirus spike protein," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Xintao Song & Lei Bao & Chenjie Feng & Qiang Huang & Fa Zhang & Xin Gao & Renmin Han, 2024. "Accurate Prediction of Protein Structural Flexibility by Deep Learning Integrating Intricate Atomic Structures and Cryo-EM Density Information," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Jimin Lee & Cameron Stewart & Alexandra Schäfer & Elizabeth M. Leaf & Young-Jun Park & Daniel Asarnow & John M. Powers & Catherine Treichel & Kaitlin R. Sprouse & Davide Corti & Ralph Baric & Neil P. , 2024. "A broadly generalizable stabilization strategy for sarbecovirus fusion machinery vaccines," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Antoni G. Wrobel & Donald J. Benton & Chloë Roustan & Annabel Borg & Saira Hussain & Stephen R. Martin & Peter B. Rosenthal & John J. Skehel & Steven J. Gamblin, 2022. "Evolution of the SARS-CoV-2 spike protein in the human host," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:531:y:2016:i:7592:d:10.1038_nature16988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.