IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v527y2015i7576d10.1038_nature15709.html
   My bibliography  Save this article

Ion channels enable electrical communication in bacterial communities

Author

Listed:
  • Arthur Prindle

    (University of California San Diego)

  • Jintao Liu

    (University of California San Diego)

  • Munehiro Asally

    (Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick)

  • San Ly

    (University of California San Diego)

  • Jordi Garcia-Ojalvo

    (Universitat Pompeu Fabra)

  • Gürol M. Süel

    (University of California San Diego)

Abstract

The study of bacterial ion channels has provided fundamental insights into the structural basis of neuronal signalling; however, the native role of ion channels in bacteria has remained elusive. Here we show that ion channels conduct long-range electrical signals within bacterial biofilm communities through spatially propagating waves of potassium. These waves result from a positive feedback loop, in which a metabolic trigger induces release of intracellular potassium, which in turn depolarizes neighbouring cells. Propagating through the biofilm, this wave of depolarization coordinates metabolic states among cells in the interior and periphery of the biofilm. Deletion of the potassium channel abolishes this response. As predicted by a mathematical model, we further show that spatial propagation can be hindered by specific genetic perturbations to potassium channel gating. Together, these results demonstrate a function for ion channels in bacterial biofilms, and provide a prokaryotic paradigm for active, long-range electrical signalling in cellular communities.

Suggested Citation

  • Arthur Prindle & Jintao Liu & Munehiro Asally & San Ly & Jordi Garcia-Ojalvo & Gürol M. Süel, 2015. "Ion channels enable electrical communication in bacterial communities," Nature, Nature, vol. 527(7576), pages 59-63, November.
  • Handle: RePEc:nat:nature:v:527:y:2015:i:7576:d:10.1038_nature15709
    DOI: 10.1038/nature15709
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature15709
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature15709?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Na Chen & Na Du & Ruichen Shen & Tianpei He & Jing Xi & Jie Tan & Guangkai Bian & Yanbing Yang & Tiangang Liu & Weihong Tan & Lilei Yu & Quan Yuan, 2023. "Redox signaling-driven modulation of microbial biosynthesis and biocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Christwardana, Marcelinus & Frattini, Domenico & Accardo, Grazia & Yoon, Sung Pil & Kwon, Yongchai, 2018. "Early-stage performance evaluation of flowing microbial fuel cells using chemically treated carbon felt and yeast biocatalyst," Applied Energy, Elsevier, vol. 222(C), pages 369-382.
    3. Ashty S. Karim & Dylan M. Brown & Chloé M. Archuleta & Sharisse Grannan & Ludmilla Aristilde & Yogesh Goyal & Josh N. Leonard & Niall M. Mangan & Arthur Prindle & Gabriel J. Rocklin & Keith J. Tyo & L, 2024. "Deconstructing synthetic biology across scales: a conceptual approach for training synthetic biologists," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Xiaoling Zhai & Joseph W Larkin & Kaito Kikuchi & Samuel E Redford & Ushasi Roy & Gürol M Süel & Andrew Mugler, 2019. "Statistics of correlated percolation in a bacterial community," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-19, December.
    5. Yan, Xuejun & Lee, Hyung-Sool & Li, Nan & Wang, Xin, 2020. "The micro-niche of exoelectrogens influences bioelectricity generation in bioelectrochemical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Michael F. Fuss & Jan-Philip Wieferig & Robin A. Corey & Yvonne Hellmich & Igor Tascón & Joana S. Sousa & Phillip J. Stansfeld & Janet Vonck & Inga Hänelt, 2023. "Cyclic di-AMP traps proton-coupled K+ transporters of the KUP family in an inward-occluded conformation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:527:y:2015:i:7576:d:10.1038_nature15709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.