IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v526y2015i7574d10.1038_nature15695.html
   My bibliography  Save this article

Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis

Author

Listed:
  • Minoru Takasato

    (Murdoch Childrens Research Institute, The Royal Children's Hospital Melbourne
    Institute for Molecular Bioscience, The University of Queensland)

  • Pei X. Er

    (Murdoch Childrens Research Institute, The Royal Children's Hospital Melbourne)

  • Han S. Chiu

    (Institute for Molecular Bioscience, The University of Queensland)

  • Barbara Maier

    (Institute for Molecular Bioscience, The University of Queensland)

  • Gregory J. Baillie

    (Institute for Molecular Bioscience, The University of Queensland)

  • Charles Ferguson

    (Institute for Molecular Bioscience, The University of Queensland)

  • Robert G. Parton

    (Institute for Molecular Bioscience, The University of Queensland)

  • Ernst J. Wolvetang

    (Australian Institute for Bioengineering and Nanotechnology, The University of Queensland)

  • Matthias S. Roost

    (Leiden University Medical Center)

  • Susana M. Chuva de Sousa Lopes

    (Leiden University Medical Center)

  • Melissa H. Little

    (Murdoch Childrens Research Institute, The Royal Children's Hospital Melbourne
    Institute for Molecular Bioscience, The University of Queensland
    The University of Melbourne)

Abstract

The kidney arises from two types of progenitors; here, the signalling conditions that induce the production of collecting ducts and functional nephrons from human pluripotent stem cells are determined, and organoids that recapitulate the functional regionalization of the kidney are produced.

Suggested Citation

  • Minoru Takasato & Pei X. Er & Han S. Chiu & Barbara Maier & Gregory J. Baillie & Charles Ferguson & Robert G. Parton & Ernst J. Wolvetang & Matthias S. Roost & Susana M. Chuva de Sousa Lopes & Melissa, 2015. "Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis," Nature, Nature, vol. 526(7574), pages 564-568, October.
  • Handle: RePEc:nat:nature:v:526:y:2015:i:7574:d:10.1038_nature15695
    DOI: 10.1038/nature15695
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature15695
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature15695?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jessica M. Vanslambrouck & Sean B. Wilson & Ker Sin Tan & Ella Groenewegen & Rajeev Rudraraju & Jessica Neil & Kynan T. Lawlor & Sophia Mah & Michelle Scurr & Sara E. Howden & Kanta Subbarao & Melissa, 2022. "Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    2. Sienna R. Li & Ramila E. Gulieva & Louisa Helms & Nelly M. Cruz & Thomas Vincent & Hongxia Fu & Jonathan Himmelfarb & Benjamin S. Freedman, 2022. "Glucose absorption drives cystogenesis in a human organoid-on-chip model of polycystic kidney disease," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Betz, Ulrich A.K. & Arora, Loukik & Assal, Reem A. & Azevedo, Hatylas & Baldwin, Jeremy & Becker, Michael S. & Bostock, Stefan & Cheng, Vinton & Egle, Tobias & Ferrari, Nicola & Schneider-Futschik, El, 2023. "Game changers in science and technology - now and beyond," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    4. Eun Jung Kim & Caressa Chen & Rebecca Gologorsky & Ana Santandreu & Alonso Torres & Nathan Wright & Mark S. Goodin & Jarrett Moyer & Benjamin W. Chui & Charles Blaha & Paul Brakeman & Shant Vartanian , 2023. "Feasibility of an implantable bioreactor for renal cell therapy using silicon nanopore membranes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Naomi Pode-Shakked & Megan Slack & Nambirajan Sundaram & Ruth Schreiber & Kyle W. McCracken & Benjamin Dekel & Michael Helmrath & Raphael Kopan, 2023. "RAAS-deficient organoids indicate delayed angiogenesis as a possible cause for autosomal recessive renal tubular dysgenesis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:526:y:2015:i:7574:d:10.1038_nature15695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.