IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v524y2015i7565d10.1038_nature14883.html
   My bibliography  Save this article

Structural integration in hypoxia-inducible factors

Author

Listed:
  • Dalei Wu

    (Metabolic Disease Program, Sanford Burnham Prebys Medical Discovery Institute)

  • Nalini Potluri

    (Metabolic Disease Program, Sanford Burnham Prebys Medical Discovery Institute)

  • Jingping Lu

    (Metabolic Disease Program, Sanford Burnham Prebys Medical Discovery Institute)

  • Youngchang Kim

    (Structural Biology Center, Argonne National Laboratory)

  • Fraydoon Rastinejad

    (Metabolic Disease Program, Sanford Burnham Prebys Medical Discovery Institute)

Abstract

The hypoxia-inducible factors (HIFs) coordinate cellular adaptations to low oxygen stress by regulating transcriptional programs in erythropoiesis, angiogenesis and metabolism. These programs promote the growth and progression of many tumours, making HIFs attractive anticancer targets. Transcriptionally active HIFs consist of HIF-α and ARNT (also called HIF-1β) subunits. Here we describe crystal structures for each of mouse HIF-2α–ARNT and HIF-1α–ARNT heterodimers in states that include bound small molecules and their hypoxia response element. A highly integrated quaternary architecture is shared by HIF-2α–ARNT and HIF-1α–ARNT, wherein ARNT spirals around the outside of each HIF-α subunit. Five distinct pockets are observed that permit small-molecule binding, including PAS domain encapsulated sites and an interfacial cavity formed through subunit heterodimerization. The DNA-reading head rotates, extends and cooperates with a distal PAS domain to bind hypoxia response elements. HIF-α mutations linked to human cancers map to sensitive sites that establish DNA binding and the stability of PAS domains and pockets.

Suggested Citation

  • Dalei Wu & Nalini Potluri & Jingping Lu & Youngchang Kim & Fraydoon Rastinejad, 2015. "Structural integration in hypoxia-inducible factors," Nature, Nature, vol. 524(7565), pages 303-308, August.
  • Handle: RePEc:nat:nature:v:524:y:2015:i:7565:d:10.1038_nature14883
    DOI: 10.1038/nature14883
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature14883
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature14883?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuyan Dai & Lingzhi Qu & Jun Li & Ye Zhang & Longying Jiang & Hudie Wei & Ming Guo & Xiaojuan Chen & Yongheng Chen, 2022. "Structural insight into the ligand binding mechanism of aryl hydrocarbon receptor," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Xiaotong Diao & Fei Ye & Meina Zhang & Xintong Ren & Xiaoxu Tian & Jingping Lu & Xiangnan Sun & Zeng Hou & Xiaoyu Chen & Fengwei Li & Jingjing Zhuang & Hong Ding & Chao Peng & Fraydoon Rastinejad & Ch, 2022. "Identification of oleoylethanolamide as an endogenous ligand for HIF-3α," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:524:y:2015:i:7565:d:10.1038_nature14883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.