IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v524y2015i7563d10.1038_nature14862.html
   My bibliography  Save this article

Protein synthesis by ribosomes with tethered subunits

Author

Listed:
  • Cédric Orelle

    (Center for Pharmaceutical Biotechnology – m/c 870, University of Illinois at Chicago
    †Present address: Institut de Biologie et Chimie des Protéines, UMR5086 CNRS/Université Lyon 1, 7 passage du Vercors, 69367 Lyon, France.)

  • Erik D. Carlson

    (Northwestern University
    Chemistry of Life Processes Institute, Northwestern University)

  • Teresa Szal

    (Center for Pharmaceutical Biotechnology – m/c 870, University of Illinois at Chicago)

  • Tanja Florin

    (Center for Pharmaceutical Biotechnology – m/c 870, University of Illinois at Chicago)

  • Michael C. Jewett

    (Northwestern University
    Chemistry of Life Processes Institute, Northwestern University)

  • Alexander S. Mankin

    (Center for Pharmaceutical Biotechnology – m/c 870, University of Illinois at Chicago)

Abstract

A ribosome with tethered subunits, ‘Ribo-T’, is engineered by making a hybrid RNA composed of ribosomal RNA of large and small subunits; Ribo-T can support cell growth in vivo in the absence of wild-type ribosomes, and is used to establish a fully orthogonal ribosome–mRNA system.

Suggested Citation

  • Cédric Orelle & Erik D. Carlson & Teresa Szal & Tanja Florin & Michael C. Jewett & Alexander S. Mankin, 2015. "Protein synthesis by ribosomes with tethered subunits," Nature, Nature, vol. 524(7563), pages 119-124, August.
  • Handle: RePEc:nat:nature:v:524:y:2015:i:7563:d:10.1038_nature14862
    DOI: 10.1038/nature14862
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature14862
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature14862?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Molly F. Parsons & Matthew F. Allan & Shanshan Li & Tyson R. Shepherd & Sakul Ratanalert & Kaiming Zhang & Krista M. Pullen & Wah Chiu & Silvi Rouskin & Mark Bathe, 2023. "3D RNA-scaffolded wireframe origami," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Minkoo Ahn & Tomasz Włodarski & Alkistis Mitropoulou & Sammy H. S. Chan & Haneesh Sidhu & Elena Plessa & Thomas A. Becker & Nediljko Budisa & Christopher A. Waudby & Roland Beckmann & Anaïs M. E. Cass, 2022. "Modulating co-translational protein folding by rational design and ribosome engineering," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Felix Gersteuer & Martino Morici & Sara Gabrielli & Keigo Fujiwara & Haaris A. Safdari & Helge Paternoga & Lars V. Bock & Shinobu Chiba & Daniel N. Wilson, 2024. "The SecM arrest peptide traps a pre-peptide bond formation state of the ribosome," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Antje Krüger & Andrew M. Watkins & Roger Wellington-Oguri & Jonathan Romano & Camila Kofman & Alysse DeFoe & Yejun Kim & Jeff Anderson-Lee & Eli Fisker & Jill Townley & Anne E. d’Aquino & Rhiju Das & , 2023. "Community science designed ribosomes with beneficial phenotypes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Roberto Di Blasi & Mara Pisani & Fabiana Tedeschi & Masue M. Marbiah & Karen Polizzi & Simone Furini & Velia Siciliano & Francesca Ceroni, 2023. "Resource-aware construct design in mammalian cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Noor Radde & Genevieve A. Mortensen & Diya Bhat & Shireen Shah & Joseph J. Clements & Sean P. Leonard & Matthew J. McGuffie & Dennis M. Mishler & Jeffrey E. Barrick, 2024. "Measuring the burden of hundreds of BioBricks defines an evolutionary limit on constructability in synthetic biology," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:524:y:2015:i:7563:d:10.1038_nature14862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.