IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v522y2015i7555d10.1038_nature14493.html
   My bibliography  Save this article

Chromothripsis from DNA damage in micronuclei

Author

Listed:
  • Cheng-Zhong Zhang

    (Dana-Farber Cancer Institute
    Dana-Farber Cancer Institute
    Broad Institute of Harvard and MIT
    Harvard Medical School)

  • Alexander Spektor

    (Dana-Farber Cancer Institute
    Harvard Medical School
    Dana-Farber Cancer Institute)

  • Hauke Cornils

    (Dana-Farber Cancer Institute
    Harvard Medical School)

  • Joshua M. Francis

    (Dana-Farber Cancer Institute
    Broad Institute of Harvard and MIT)

  • Emily K. Jackson

    (Dana-Farber Cancer Institute
    Harvard Medical School
    Howard Hughes Medical Institute)

  • Shiwei Liu

    (Dana-Farber Cancer Institute
    Harvard Medical School)

  • Matthew Meyerson

    (Dana-Farber Cancer Institute
    Broad Institute of Harvard and MIT
    Harvard Medical School
    Center for Cancer Genome Discovery, Dana-Farber Cancer Institute)

  • David Pellman

    (Dana-Farber Cancer Institute
    Broad Institute of Harvard and MIT
    Harvard Medical School
    Howard Hughes Medical Institute)

Abstract

Genome sequencing has uncovered a new mutational phenomenon in cancer and congenital disorders called chromothripsis. Chromothripsis is characterized by extensive genomic rearrangements and an oscillating pattern of DNA copy number levels, all curiously restricted to one or a few chromosomes. The mechanism for chromothripsis is unknown, but we previously proposed that it could occur through the physical isolation of chromosomes in aberrant nuclear structures called micronuclei. Here, using a combination of live cell imaging and single-cell genome sequencing, we demonstrate that micronucleus formation can indeed generate a spectrum of genomic rearrangements, some of which recapitulate all known features of chromothripsis. These events are restricted to the mis-segregated chromosome and occur within one cell division. We demonstrate that the mechanism for chromothripsis can involve the fragmentation and subsequent reassembly of a single chromatid from a micronucleus. Collectively, these experiments establish a new mutational process of which chromothripsis is one extreme outcome.

Suggested Citation

  • Cheng-Zhong Zhang & Alexander Spektor & Hauke Cornils & Joshua M. Francis & Emily K. Jackson & Shiwei Liu & Matthew Meyerson & David Pellman, 2015. "Chromothripsis from DNA damage in micronuclei," Nature, Nature, vol. 522(7555), pages 179-184, June.
  • Handle: RePEc:nat:nature:v:522:y:2015:i:7555:d:10.1038_nature14493
    DOI: 10.1038/nature14493
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature14493
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature14493?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Albert Stuart Reece & Gary Kenneth Hulse, 2022. "Cannabis- and Substance-Related Epidemiological Patterns of Chromosomal Congenital Anomalies in Europe: Geospatiotemporal and Causal Inferential Study," IJERPH, MDPI, vol. 19(18), pages 1-51, September.
    2. Lorenza Garribba & Giuseppina De Feudis & Valentino Martis & Martina Galli & Marie Dumont & Yonatan Eliezer & René Wardenaar & Marica Rosaria Ippolito & Divya Ramalingam Iyer & Andréa E. Tijhuis & Dia, 2023. "Short-term molecular consequences of chromosome mis-segregation for genome stability," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Qing Hu & Jose Espejo Valle-Inclán & Rashmi Dahiya & Alison Guyer & Alice Mazzagatti & Elizabeth G. Maurais & Justin L. Engel & Huiming Lu & Anthony J. Davis & Isidro Cortés-Ciriano & Peter Ly, 2024. "Non-homologous end joining shapes the genomic rearrangement landscape of chromothripsis from mitotic errors," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Song Gao & Shuaibin Wang & Zhiying Zhao & Chao Zhang & Zhicao Liu & Ping Ye & Zhifang Xu & Baozhu Yi & Kai Jiao & Gurudatta A. Naik & Shi Wei & Soroush Rais-Bahrami & Sejong Bae & Wei-Hsiung Yang & Gu, 2022. "TUBB4A interacts with MYH9 to protect the nucleus during cell migration and promotes prostate cancer via GSK3β/β-catenin signalling," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Albert Stuart Reece & Gary Kenneth Hulse, 2022. "Epidemiology of Δ8THC-Related Carcinogenesis in USA: A Panel Regression and Causal Inferential Study," IJERPH, MDPI, vol. 19(13), pages 1-27, June.
    6. Chunyang Bao & Richard W. Tourdot & Gregory J. Brunette & Chip Stewart & Lili Sun & Hideo Baba & Masayuki Watanabe & Agoston T. Agoston & Kunal Jajoo & Jon M. Davison & Katie S. Nason & Gad Getz & Ken, 2023. "Genomic signatures of past and present chromosomal instability in Barrett’s esophagus and early esophageal adenocarcinoma," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    7. Jason Alexander Halliwell & Javier Martin-Gonzalez & Adnan Hashim & John Arne Dahl & Eva R. Hoffmann & Mads Lerdrup, 2024. "Sex-specific DNA-replication in the early mammalian embryo," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Xue-Ke Zhao & Pengwei Xing & Xin Song & Miao Zhao & Linxuan Zhao & Yonglong Dang & Ling-Ling Lei & Rui-Hua Xu & Wen-Li Han & Pan-Pan Wang & Miao-Miao Yang & Jing-Feng Hu & Kan Zhong & Fu-You Zhou & Xu, 2021. "Focal amplifications are associated with chromothripsis events and diverse prognoses in gastric cardia adenocarcinoma," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    9. Mihoko Saito-Adachi & Natsuko Hama & Yasushi Totoki & Hiromi Nakamura & Yasuhito Arai & Fumie Hosoda & Hirofumi Rokutan & Shinichi Yachida & Mamoru Kato & Akihiko Fukagawa & Tatsuhiro Shibata, 2023. "Oncogenic structural aberration landscape in gastric cancer genomes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Heathcliff Dorado García & Fabian Pusch & Yi Bei & Jennifer Stebut & Glorymar Ibáñez & Kristina Guillan & Koshi Imami & Dennis Gürgen & Jana Rolff & Konstantin Helmsauer & Stephanie Meyer-Liesener & N, 2022. "Therapeutic targeting of ATR in alveolar rhabdomyosarcoma," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Chen Sun & Kunal Kathuria & Sarah B. Emery & ByungJun Kim & Ian E. Burbulis & Joo Heon Shin & Daniel R. Weinberger & John V. Moran & Jeffrey M. Kidd & Ryan E. Mills & Michael J. McConnell, 2024. "Mapping recurrent mosaic copy number variation in human neurons," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Stamatis Papathanasiou & Styliani Markoulaki & Logan J. Blaine & Mitchell L. Leibowitz & Cheng-Zhong Zhang & Rudolf Jaenisch & David Pellman, 2021. "Whole chromosome loss and genomic instability in mouse embryos after CRISPR-Cas9 genome editing," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    13. Kate M. MacDonald & Shirony Nicholson-Puthenveedu & Maha M. Tageldein & Sarika Khasnis & Cheryl H. Arrowsmith & Shane M. Harding, 2023. "Antecedent chromatin organization determines cGAS recruitment to ruptured micronuclei," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Jimyung Seo & HyunSeok Kim & Kyoung Il Min & Changgon Kim & Yongsoo Kwon & Zhenlong Zheng & Yusung Kim & Hyung-Soon Park & Young Seok Ju & Mi Ryung Roh & Kee Yang Chung & Joon Kim, 2022. "Weight-bearing activity impairs nuclear membrane and genome integrity via YAP activation in plantar melanoma," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:522:y:2015:i:7555:d:10.1038_nature14493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.