IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v513y2014i7519d10.1038_nature13490.html
   My bibliography  Save this article

Functional polarization of tumour-associated macrophages by tumour-derived lactic acid

Author

Listed:
  • Oscar R. Colegio

    (Yale University School of Medicine
    Yale University School of Medicine
    Yale-New Haven Transplantation Center, Yale University School of Medicine
    Yale Cancer Center, Yale University School of Medicine)

  • Ngoc-Quynh Chu

    (Yale University School of Medicine)

  • Alison L. Szabo

    (Yale University School of Medicine)

  • Thach Chu

    (Yale University School of Medicine)

  • Anne Marie Rhebergen

    (Yale University School of Medicine)

  • Vikram Jairam

    (Yale University School of Medicine)

  • Nika Cyrus

    (Yale University School of Medicine)

  • Carolyn E. Brokowski

    (Yale University School of Medicine)

  • Stephanie C. Eisenbarth

    (Yale University School of Medicine
    Yale University School of Medicine)

  • Gillian M. Phillips

    (Yale University School of Medicine)

  • Gary W. Cline

    (Yale University School of Medicine)

  • Andrew J. Phillips

    (Yale University School of Medicine)

  • Ruslan Medzhitov

    (Yale University School of Medicine
    Yale Cancer Center, Yale University School of Medicine
    Howard Hughes Medical Institute)

Abstract

The growth of tumours is supported by tumour production of lactic acid, which polarizes tumour-associated macrophages to an M2 phenotype through a pathway dependent on hypoxia-inducible factor 1α.

Suggested Citation

  • Oscar R. Colegio & Ngoc-Quynh Chu & Alison L. Szabo & Thach Chu & Anne Marie Rhebergen & Vikram Jairam & Nika Cyrus & Carolyn E. Brokowski & Stephanie C. Eisenbarth & Gillian M. Phillips & Gary W. Cli, 2014. "Functional polarization of tumour-associated macrophages by tumour-derived lactic acid," Nature, Nature, vol. 513(7519), pages 559-563, September.
  • Handle: RePEc:nat:nature:v:513:y:2014:i:7519:d:10.1038_nature13490
    DOI: 10.1038/nature13490
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature13490
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature13490?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianshi Feng & Xuemei Zhao & Ping Gu & Wah Yang & Cunchuan Wang & Qingyu Guo & Qiaoyun Long & Qing Liu & Ying Cheng & Jin Li & Cynthia Kwan Yui Cheung & Donghai Wu & Xinyu Kong & Yong Xu & Dewei Ye & , 2022. "Adipocyte-derived lactate is a signalling metabolite that potentiates adipose macrophage inflammation via targeting PHD2," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Fatima Khan & Yiyun Lin & Heba Ali & Lizhi Pang & Madeline Dunterman & Wen-Hao Hsu & Katie Frenis & R. Grant Rowe & Derek A. Wainwright & Kathleen McCortney & Leah K. Billingham & Jason Miska & Craig , 2024. "Lactate dehydrogenase A regulates tumor-macrophage symbiosis to promote glioblastoma progression," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    3. Clément Adam & Léa Paolini & Naïg Gueguen & Guillaume Mabilleau & Laurence Preisser & Simon Blanchard & Pascale Pignon & Florence Manero & Morgane Mao & Alain Morel & Pascal Reynier & Céline Beauvilla, 2021. "Acetoacetate protects macrophages from lactic acidosis-induced mitochondrial dysfunction by metabolic reprograming," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. Veli Bakalov & Laura Reyes-Uribe & Rahul Deshpande & Abigail L Maloy & Steven D Shapiro & Derek C Angus & Chung-Chou H Chang & Laurence Le Moyec & Stacy Gelhaus Wendell & Ata Murat Kaynar, 2020. "Dichloroacetate-induced metabolic reprogramming improves lifespan in a Drosophila model of surviving sepsis," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-18, November.
    5. Shuang Shang & Chen Yang & Fei Chen & Ren-shen Xiang & Huan Zhang & Shu-yuan Dai & Jing Liu & Xiao-xi Lv & Cheng Zhang & Xiao-tong Liu & Qi Zhang & Shuai-bing Lu & Jia-wei Song & Jiao-jiao Yu & Ji-cha, 2023. "ID1 expressing macrophages support cancer cell stemness and limit CD8+ T cell infiltration in colorectal cancer," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:513:y:2014:i:7519:d:10.1038_nature13490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.