IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v513y2014i7518d10.1038_nature13725.html
   My bibliography  Save this article

Bidirectional switch of the valence associated with a hippocampal contextual memory engram

Author

Listed:
  • Roger L. Redondo

    (RIKEN–MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Massachusetts Institute of Technology
    Howard Hughes Medical Institute, Massachusetts Institute of Technology)

  • Joshua Kim

    (RIKEN–MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Massachusetts Institute of Technology)

  • Autumn L. Arons

    (RIKEN–MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Massachusetts Institute of Technology
    Howard Hughes Medical Institute, Massachusetts Institute of Technology)

  • Steve Ramirez

    (RIKEN–MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Massachusetts Institute of Technology)

  • Xu Liu

    (RIKEN–MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Massachusetts Institute of Technology
    Howard Hughes Medical Institute, Massachusetts Institute of Technology)

  • Susumu Tonegawa

    (RIKEN–MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Massachusetts Institute of Technology
    Howard Hughes Medical Institute, Massachusetts Institute of Technology)

Abstract

An optogenetic approach in mice was used to investigate the neural mechanisms underlying memory valence association; dentate gyrus, but not amygdala, memory engram cells exhibit plasticity in valence associations, suggesting that emotional memory associations can be changed at the circuit level.

Suggested Citation

  • Roger L. Redondo & Joshua Kim & Autumn L. Arons & Steve Ramirez & Xu Liu & Susumu Tonegawa, 2014. "Bidirectional switch of the valence associated with a hippocampal contextual memory engram," Nature, Nature, vol. 513(7518), pages 426-430, September.
  • Handle: RePEc:nat:nature:v:513:y:2014:i:7518:d:10.1038_nature13725
    DOI: 10.1038/nature13725
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature13725
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature13725?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodrigo Ordoñez Sierra & Lizeth Katherine Pedraza & Lívia Barcsai & Andrea Pejin & Qun Li & Gábor Kozák & Yuichi Takeuchi & Anett J. Nagy & Magor L. Lőrincz & Orrin Devinsky & György Buzsáki & Antal B, 2023. "Closed-loop brain stimulation augments fear extinction in male rats," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Alexandros A. Lavdas & Nikos A. Salingaros, 2022. "Architectural Beauty: Developing a Measurable and Objective Scale," Challenges, MDPI, vol. 13(2), pages 1-32, October.
    3. Dheeraj S. Roy & Young-Gyun Park & Minyoung E. Kim & Ying Zhang & Sachie K. Ogawa & Nicholas DiNapoli & Xinyi Gu & Jae H. Cho & Heejin Choi & Lee Kamentsky & Jared Martin & Olivia Mosto & Tomomi Aida , 2022. "Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Yann Vanrobaeys & Utsav Mukherjee & Lucy Langmack & Stacy E. Beyer & Ethan Bahl & Li-Chun Lin & Jacob J. Michaelson & Ted Abel & Snehajyoti Chatterjee, 2023. "Mapping the spatial transcriptomic signature of the hippocampus during memory consolidation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Jun Liu & Arron F. Hall & Dong V. Wang, 2024. "Emerging many-to-one weighted mapping in hippocampus-amygdala network underlies memory formation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Stephanie L. Grella & Amanda H. Fortin & Evan Ruesch & John H. Bladon & Leanna F. Reynolds & Abby Gross & Monika Shpokayte & Christine Cincotta & Yosif Zaki & Steve Ramirez, 2022. "Reactivating hippocampal-mediated memories during reconsolidation to disrupt fear," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:513:y:2014:i:7518:d:10.1038_nature13725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.