IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v507y2014i7491d10.1038_nature13124.html
   My bibliography  Save this article

C9orf72 nucleotide repeat structures initiate molecular cascades of disease

Author

Listed:
  • Aaron R. Haeusler

    (Johns Hopkins University Baltimore
    Johns Hopkins University Baltimore)

  • Christopher J. Donnelly

    (Johns Hopkins University Baltimore
    The Brain Science Institute, Johns Hopkins University Baltimore)

  • Goran Periz

    (Johns Hopkins University Baltimore
    Johns Hopkins University Baltimore)

  • Eric A. J. Simko

    (Johns Hopkins University Baltimore
    Johns Hopkins University Baltimore)

  • Patrick G. Shaw

    (McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University Baltimore)

  • Min-Sik Kim

    (McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University Baltimore)

  • Nicholas J. Maragakis

    (Johns Hopkins University Baltimore)

  • Juan C. Troncoso

    (Johns Hopkins University Baltimore)

  • Akhilesh Pandey

    (McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University Baltimore)

  • Rita Sattler

    (Johns Hopkins University Baltimore
    The Brain Science Institute, Johns Hopkins University Baltimore)

  • Jeffrey D. Rothstein

    (Johns Hopkins University Baltimore
    Johns Hopkins University Baltimore
    The Brain Science Institute, Johns Hopkins University Baltimore)

  • Jiou Wang

    (Johns Hopkins University Baltimore
    Johns Hopkins University Baltimore)

Abstract

A hexanucleotide repeat expansion (HRE), (GGGGCC)n, in C9orf72 is the most common genetic cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we identify a molecular mechanism by which structural polymorphism of the HRE leads to ALS/FTD pathology and defects. The HRE forms DNA and RNA G-quadruplexes with distinct structures and promotes RNA•DNA hybrids (R-loops). The structural polymorphism causes a repeat-length-dependent accumulation of transcripts aborted in the HRE region. These transcribed repeats bind to ribonucleoproteins in a conformation-dependent manner. Specifically, nucleolin, an essential nucleolar protein, preferentially binds the HRE G-quadruplex, and patient cells show evidence of nucleolar stress. Our results demonstrate that distinct C9orf72 HRE structural polymorphism at both DNA and RNA levels initiates molecular cascades leading to ALS/FTD pathologies, and provide the basis for a mechanistic model for repeat-associated neurodegenerative diseases.

Suggested Citation

  • Aaron R. Haeusler & Christopher J. Donnelly & Goran Periz & Eric A. J. Simko & Patrick G. Shaw & Min-Sik Kim & Nicholas J. Maragakis & Juan C. Troncoso & Akhilesh Pandey & Rita Sattler & Jeffrey D. Ro, 2014. "C9orf72 nucleotide repeat structures initiate molecular cascades of disease," Nature, Nature, vol. 507(7491), pages 195-200, March.
  • Handle: RePEc:nat:nature:v:507:y:2014:i:7491:d:10.1038_nature13124
    DOI: 10.1038/nature13124
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature13124
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature13124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kazuki Ichikawa & Riki Kawahara & Takeshi Asano & Shinichi Morishita, 2023. "A landscape of complex tandem repeats within individual human genomes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Jing Tu & Mengqin Duan & Wenli Liu & Na Lu & Yue Zhou & Xiao Sun & Zuhong Lu, 2021. "Direct genome-wide identification of G-quadruplex structures by whole-genome resequencing," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Emily L. Spaulding & Alexis M. Feidler & Lio A. Cook & Dustin L. Updike, 2022. "RG/RGG repeats in the C. elegans homologs of Nucleolin and GAR1 contribute to sub-nucleolar phase separation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Mirjana Malnar Črnigoj & Urša Čerček & Xiaoke Yin & Manh Tin Ho & Barbka Repic Lampret & Manuela Neumann & Andreas Hermann & Guy Rouleau & Beat Suter & Manuel Mayr & Boris Rogelj, 2023. "Phenylalanine-tRNA aminoacylation is compromised by ALS/FTD-associated C9orf72 C4G2 repeat RNA," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Geng Liu & Wenya Du & Xiongbo Sang & Qiyu Tong & Ye Wang & Guoqing Chen & Yi Yuan & Lili Jiang & Wei Cheng & Dan Liu & Yan Tian & Xianghui Fu, 2022. "RNA G-quadruplex in TMPRSS2 reduces SARS-CoV-2 infection," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Amanda M. Gleixner & Brandie Morris Verdone & Charlton G. Otte & Eric N. Anderson & Nandini Ramesh & Olivia R. Shapiro & Jenna R. Gale & Jocelyn C. Mauna & Jacob R. Mann & Katie E. Copley & Elizabeth , 2022. "NUP62 localizes to ALS/FTLD pathological assemblies and contributes to TDP-43 insolubility," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Zhefan Stephen Chen & Mingxi Ou & Stephanie Taylor & Ruxandra Dafinca & Shaohong Isaac Peng & Kevin Talbot & Ho Yin Edwin Chan, 2023. "Mutant GGGGCC RNA prevents YY1 from binding to Fuzzy promoter which stimulates Wnt/β-catenin pathway in C9ALS/FTD," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    8. Xingxing Ren & Qiuyuan Liu & Peirong Zhou & Tingyue Zhou & Decai Wang & Qiao Mei & Richard A. Flavell & Zhanju Liu & Mingsong Li & Wen Pan & Shu Zhu, 2024. "DHX9 maintains epithelial homeostasis by restraining R-loop-mediated genomic instability in intestinal stem cells," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:507:y:2014:i:7491:d:10.1038_nature13124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.