IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v505y2014i7484d10.1038_nature12912.html
   My bibliography  Save this article

Discovery and saturation analysis of cancer genes across 21 tumour types

Author

Listed:
  • Michael S. Lawrence

    (Broad Institute of MIT and Harvard, 7 Cambridge Center)

  • Petar Stojanov

    (Broad Institute of MIT and Harvard, 7 Cambridge Center
    Dana-Farber Cancer Institute, 450 Brookline Avenue)

  • Craig H. Mermel

    (Broad Institute of MIT and Harvard, 7 Cambridge Center
    Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, USA)

  • James T. Robinson

    (Broad Institute of MIT and Harvard, 7 Cambridge Center)

  • Levi A. Garraway

    (Broad Institute of MIT and Harvard, 7 Cambridge Center
    Dana-Farber Cancer Institute, 450 Brookline Avenue
    Harvard Medical School, 25 Shattuck Street)

  • Todd R. Golub

    (Broad Institute of MIT and Harvard, 7 Cambridge Center
    Dana-Farber Cancer Institute, 450 Brookline Avenue
    Harvard Medical School, 25 Shattuck Street
    Howard Hughes Medical Institute, 4000 Jones Bridge Road)

  • Matthew Meyerson

    (Broad Institute of MIT and Harvard, 7 Cambridge Center
    Dana-Farber Cancer Institute, 450 Brookline Avenue
    Harvard Medical School, 25 Shattuck Street)

  • Stacey B. Gabriel

    (Broad Institute of MIT and Harvard, 7 Cambridge Center)

  • Eric S. Lander

    (Broad Institute of MIT and Harvard, 7 Cambridge Center
    Harvard Medical School, 25 Shattuck Street
    Massachusetts Institute of Technology, 77 Massachusetts Avenue)

  • Gad Getz

    (Broad Institute of MIT and Harvard, 7 Cambridge Center
    Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, USA
    Harvard Medical School, 25 Shattuck Street)

Abstract

Although a few cancer genes are mutated in a high proportion of tumours of a given type (>20%), most are mutated at intermediate frequencies (2–20%). To explore the feasibility of creating a comprehensive catalogue of cancer genes, we analysed somatic point mutations in exome sequences from 4,742 human cancers and their matched normal-tissue samples across 21 cancer types. We found that large-scale genomic analysis can identify nearly all known cancer genes in these tumour types. Our analysis also identified 33 genes that were not previously known to be significantly mutated in cancer, including genes related to proliferation, apoptosis, genome stability, chromatin regulation, immune evasion, RNA processing and protein homeostasis. Down-sampling analysis indicates that larger sample sizes will reveal many more genes mutated at clinically important frequencies. We estimate that near-saturation may be achieved with 600–5,000 samples per tumour type, depending on background mutation frequency. The results may help to guide the next stage of cancer genomics.

Suggested Citation

  • Michael S. Lawrence & Petar Stojanov & Craig H. Mermel & James T. Robinson & Levi A. Garraway & Todd R. Golub & Matthew Meyerson & Stacey B. Gabriel & Eric S. Lander & Gad Getz, 2014. "Discovery and saturation analysis of cancer genes across 21 tumour types," Nature, Nature, vol. 505(7484), pages 495-501, January.
  • Handle: RePEc:nat:nature:v:505:y:2014:i:7484:d:10.1038_nature12912
    DOI: 10.1038/nature12912
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature12912
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature12912?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guozhong Jiang & Zhizhong Wang & Zhenguo Cheng & Weiwei Wang & Shuangshuang Lu & Zifang Zhang & Chinedu A. Anene & Faraz Khan & Yue Chen & Emma Bailey & Huisha Xu & Yunshu Dong & Peinan Chen & Zhongxi, 2024. "The integrated molecular and histological analysis defines subtypes of esophageal squamous cell carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Zhe Jiang & YoungJun Ju & Amjad Ali & Philip E. D. Chung & Patryk Skowron & Dong-Yu Wang & Mariusz Shrestha & Huiqin Li & Jeff C. Liu & Ioulia Vorobieva & Ronak Ghanbari-Azarnier & Ethel Mwewa & Maria, 2023. "Distinct shared and compartment-enriched oncogenic networks drive primary versus metastatic breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    3. Sumana Srivatsa & Hesam Montazeri & Gaia Bianco & Mairene Coto-Llerena & Mattia Marinucci & Charlotte K. Y. Ng & Salvatore Piscuoglio & Niko Beerenwinkel, 2022. "Discovery of synthetic lethal interactions from large-scale pan-cancer perturbation screens," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Marjan M. Naeini & Felicity Newell & Lauren G. Aoude & Vanessa F. Bonazzi & Kalpana Patel & Guy Lampe & Lambros T. Koufariotis & Vanessa Lakis & Venkateswar Addala & Olga Kondrashova & Rebecca L. John, 2023. "Multi-omic features of oesophageal adenocarcinoma in patients treated with preoperative neoadjuvant therapy," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Mu-Kuei Shieu & Hsin-Yu Ho & Shu-Hui Lin & Yu-Sheng Lo & Chia-Chieh Lin & Yi-Ching Chuang & Ming-Ju Hsieh & Mu-Kuan Chen, 2022. "Association of KMT2C Genetic Variants with the Clinicopathologic Development of Oral Cancer," IJERPH, MDPI, vol. 19(7), pages 1-10, March.
    6. Phillips, J.C., 2016. "Autoantibody recognition mechanisms of p53 epitopes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 162-170.
    7. François Serra & Andrea Nieto-Aliseda & Lucía Fanlo-Escudero & Llorenç Rovirosa & Mónica Cabrera-Pasadas & Aleksey Lazarenkov & Blanca Urmeneta & Alvaro Alcalde-Merino & Emanuele M. Nola & Andrei L. O, 2024. "p53 rapidly restructures 3D chromatin organization to trigger a transcriptional response," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    8. Meredith L. Jenkins & Harish Ranga-Prasad & Matthew A. H. Parson & Noah J. Harris & Manoj K. Rathinaswamy & John E. Burke, 2023. "Oncogenic mutations of PIK3CA lead to increased membrane recruitment driven by reorientation of the ABD, p85 and C-terminus," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Yuan Lin & Theresa A. Ramelot & Simge Senyuz & Attila Gursoy & Hyunbum Jang & Ruth Nussinov & Ozlem Keskin & Yi Zheng, 2024. "Tumor-derived RHOA mutants interact with effectors in the GDP-bound state," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Josh N. Vo & Yi-Mi Wu & Jeanmarie Mishler & Sarah Hall & Rahul Mannan & Lisha Wang & Yu Ning & Jin Zhou & Alexander C. Hopkins & James C. Estill & Wallace K. B. Chan & Jennifer Yesil & Xuhong Cao & Ar, 2022. "The genetic heterogeneity and drug resistance mechanisms of relapsed refractory multiple myeloma," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Martin Boström & Erik Larsson, 2022. "Somatic mutation distribution across tumour cohorts provides a signal for positive selection in cancer," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Fengju Chen & Yiqun Zhang & Lanlan Shen & Chad J. Creighton, 2024. "The DNA methylome of pediatric brain tumors appears shaped by structural variation and predicts survival," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    13. Sebastian Carrasco Pro & Heather Hook & David Bray & Daniel Berenzy & Devlin Moyer & Meimei Yin & Adam Thomas Labadorf & Ryan Tewhey & Trevor Siggers & Juan Ignacio Fuxman Bass, 2023. "Widespread perturbation of ETS factor binding sites in cancer," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Qi Zhao & Feng Wang & Yan-Xing Chen & Shifu Chen & Yi-Chen Yao & Zhao-Lei Zeng & Teng-Jia Jiang & Ying-Nan Wang & Chen-Yi Wu & Ying Jing & You-Sheng Huang & Jing Zhang & Zi-Xian Wang & Ming-Ming He & , 2022. "Comprehensive profiling of 1015 patients’ exomes reveals genomic-clinical associations in colorectal cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    15. Mark Bustoros & Shankara Anand & Romanos Sklavenitis-Pistofidis & Robert Redd & Eileen M. Boyle & Benny Zhitomirsky & Andrew J. Dunford & Yu-Tzu Tai & Selina J. Chavda & Cody Boehner & Carl Jannes Neu, 2022. "Genetic subtypes of smoldering multiple myeloma are associated with distinct pathogenic phenotypes and clinical outcomes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Donglin Ding & Alexandra M. Blee & Jianong Zhang & Yunqian Pan & Nicole A. Becker & L. James Maher & Rafael Jimenez & Liguo Wang & Haojie Huang, 2023. "Gain-of-function mutant p53 together with ERG proto-oncogene drive prostate cancer by beta-catenin activation and pyrimidine synthesis," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    17. Manako Yamaguchi & Hirofumi Nakaoka & Kazuaki Suda & Kosuke Yoshihara & Tatsuya Ishiguro & Nozomi Yachida & Kyota Saito & Haruka Ueda & Kentaro Sugino & Yutaro Mori & Kaoru Yamawaki & Ryo Tamura & Sun, 2022. "Spatiotemporal dynamics of clonal selection and diversification in normal endometrial epithelium," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    18. Rotem Katzir & Noam Rudberg & Keren Yizhak, 2022. "Estimating tumor mutational burden from RNA-sequencing without a matched-normal sample," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Yidong Zhou & Changjun Wang & Hanjiang Zhu & Yan Lin & Bo Pan & Xiaohui Zhang & Xin Huang & Qianqian Xu & Yali Xu & Qiang Sun, 2016. "Diagnostic Accuracy of PIK3CA Mutation Detection by Circulating Free DNA in Breast Cancer: A Meta-Analysis of Diagnostic Test Accuracy," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-15, June.
    20. Feifei Xie & Shuzhen Luo & Dongbing Liu & Xiaojing Lu & Ming Wang & Xiaoxiao Liu & Fujian Jia & Yuzhi Pang & Yanying Shen & Chunling Zeng & Xinli Ma & Daoqiang Tang & Lin Tu & Linxi Yang & Yumei Cheng, 2024. "Genomic and transcriptomic landscape of human gastrointestinal stromal tumors," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    21. Yanling Liu & Jonathon Klein & Richa Bajpai & Li Dong & Quang Tran & Pandurang Kolekar & Jenny L. Smith & Rhonda E. Ries & Benjamin J. Huang & Yi-Cheng Wang & Todd A. Alonzo & Liqing Tian & Heather L., 2023. "Etiology of oncogenic fusions in 5,190 childhood cancers and its clinical and therapeutic implication," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    22. Juan Li & Yang Wang & Yue Luo & Yang Liu & Yong Yi & Jinsong Li & Yang Pan & Weiyuxin Li & Wanbang You & Qingyong Hu & Zhiqiang Zhao & Yujun Zhang & Yang Cao & Lingqiang Zhang & Junying Yuan & Zhi-Xio, 2022. "USP5-Beclin 1 axis overrides p53-dependent senescence and drives Kras-induced tumorigenicity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:505:y:2014:i:7484:d:10.1038_nature12912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.