IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v502y2013i7473d10.1038_nature12575.html
   My bibliography  Save this article

Synthetic non-oxidative glycolysis enables complete carbon conservation

Author

Listed:
  • Igor W. Bogorad

    (University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, USA.
    University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, USA)

  • Tzu-Shyang Lin

    (University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, USA.)

  • James C. Liao

    (University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, USA.
    Institute for Genomics and Proteomics, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, USA)

Abstract

A non-oxidative, cyclic pathway—termed non-oxidative glycolysis—is designed and constructed that enables complete carbon conservation in sugar catabolism to acetyl-coenzyme A, and can be used to achieve a 100% carbon yield to fuels and chemicals.

Suggested Citation

  • Igor W. Bogorad & Tzu-Shyang Lin & James C. Liao, 2013. "Synthetic non-oxidative glycolysis enables complete carbon conservation," Nature, Nature, vol. 502(7473), pages 693-697, October.
  • Handle: RePEc:nat:nature:v:502:y:2013:i:7473:d:10.1038_nature12575
    DOI: 10.1038/nature12575
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature12575
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature12575?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tong Wu & Paul A. Gómez-Coronado & Armin Kubis & Steffen N. Lindner & Philippe Marlière & Tobias J. Erb & Arren Bar-Even & Hai He, 2023. "Engineering a synthetic energy-efficient formaldehyde assimilation cycle in Escherichia coli," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Xinlei Wei & Xue Yang & Congcong Hu & Qiangzi Li & Qianqian Liu & Yue Wu & Leipeng Xie & Xiao Ning & Fei Li & Tao Cai & Zhiguang Zhu & Yi-Heng P. Job Zhang & Yanfei Zhang & Xuejun Chen & Chun You, 2024. "ATP-free in vitro biotransformation of starch-derived maltodextrin into poly-3-hydroxybutyrate via acetyl-CoA," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Jordi Perez-Gil & James Behrendorff & Andrew Douw & Claudia E. Vickers, 2024. "The methylerythritol phosphate pathway as an oxidative stress sense and response system," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Likun Guo & Min Liu & Yujia Bi & Qingsheng Qi & Mo Xian & Guang Zhao, 2023. "Using a synthetic machinery to improve carbon yield with acetylphosphate as the core," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:502:y:2013:i:7473:d:10.1038_nature12575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.