IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v501y2013i7467d10.1038_nature12627.html
   My bibliography  Save this article

Tumour heterogeneity in the clinic

Author

Listed:
  • Philippe L. Bedard

    (Princess Margaret Cancer Centre, University Health Network
    University of Toronto)

  • Aaron R. Hansen

    (Princess Margaret Cancer Centre, University Health Network
    University of Toronto)

  • Mark J. Ratain

    (The University of Chicago)

  • Lillian L. Siu

    (Princess Margaret Cancer Centre, University Health Network
    University of Toronto)

Abstract

Recent therapeutic advances in oncology have been driven by the identification of tumour genotype variations between patients, called interpatient heterogeneity, that predict the response of patients to targeted treatments. Subpopulations of cancer cells with unique genomes in the same patient may exist across different geographical regions of a tumour or evolve over time, called intratumour heterogeneity. Sequencing technologies can be used to characterize intratumour heterogeneity at diagnosis, monitor clonal dynamics during treatment and identify the emergence of clinical resistance during disease progression. Genetic interpatient and intratumour heterogeneity can pose challenges for the design of clinical trials that use these data.

Suggested Citation

  • Philippe L. Bedard & Aaron R. Hansen & Mark J. Ratain & Lillian L. Siu, 2013. "Tumour heterogeneity in the clinic," Nature, Nature, vol. 501(7467), pages 355-364, September.
  • Handle: RePEc:nat:nature:v:501:y:2013:i:7467:d:10.1038_nature12627
    DOI: 10.1038/nature12627
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature12627
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature12627?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jae-Woong Min & Woo Jin Kim & Jeong A Han & Yu-Jin Jung & Kyu-Tae Kim & Woong-Yang Park & Hae-Ock Lee & Sun Shim Choi, 2015. "Identification of Distinct Tumor Subpopulations in Lung Adenocarcinoma via Single-Cell RNA-seq," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-17, August.
    2. Li Chen & Peter L Choyke & Niya Wang & Robert Clarke & Zaver M Bhujwalla & Elizabeth M C Hillman & Ge Wang & Yue Wang, 2014. "Unsupervised Deconvolution of Dynamic Imaging Reveals Intratumor Vascular Heterogeneity and Repopulation Dynamics," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-9, November.
    3. Benjamin Wölfl & Hedy te Rietmole & Monica Salvioli & Artem Kaznatcheev & Frank Thuijsman & Joel S. Brown & Boudewijn Burgering & Kateřina Staňková, 2022. "The Contribution of Evolutionary Game Theory to Understanding and Treating Cancer," Dynamic Games and Applications, Springer, vol. 12(2), pages 313-342, June.
    4. Jose M. Ayuso & María Virumbrales-Muñoz & Joshua M. Lang & David J. Beebe, 2022. "A role for microfluidic systems in precision medicine," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Christopher R S Banerji & Simone Severini & Carlos Caldas & Andrew E Teschendorff, 2015. "Intra-Tumour Signalling Entropy Determines Clinical Outcome in Breast and Lung Cancer," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-23, March.
    6. Shiqian Ma & Daniel Johnson & Cody Ashby & Donghai Xiong & Carole L Cramer & Jason H Moore & Shuzhong Zhang & Xiuzhen Huang, 2015. "SPARCoC: A New Framework for Molecular Pattern Discovery and Cancer Gene Identification," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-19, March.
    7. Lida Qiu & Deyong Kang & Chuan Wang & Wenhui Guo & Fangmeng Fu & Qingxiang Wu & Gangqin Xi & Jiajia He & Liqin Zheng & Qingyuan Zhang & Xiaoxia Liao & Lianhuang Li & Jianxin Chen & Haohua Tu, 2022. "Intratumor graph neural network recovers hidden prognostic value of multi-biomarker spatial heterogeneity," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:501:y:2013:i:7467:d:10.1038_nature12627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.