IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v495y2013i7441d10.1038_nature11993.html
   My bibliography  Save this article

Natural RNA circles function as efficient microRNA sponges

Author

Listed:
  • Thomas B. Hansen

    (Aarhus University, C.F. Møllers Alle 3, 8000C, Aarhus, Denmark)

  • Trine I. Jensen

    (Aarhus University, C.F. Møllers Alle 3, 8000C, Aarhus, Denmark)

  • Bettina H. Clausen

    (Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløwsvej 25, 5000C, Odense, Denmark)

  • Jesper B. Bramsen

    (Aarhus University, C.F. Møllers Alle 3, 8000C, Aarhus, Denmark
    Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wiedsvej 14, 8000C, Aarhus, Denmark)

  • Bente Finsen

    (Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløwsvej 25, 5000C, Odense, Denmark)

  • Christian K. Damgaard

    (Aarhus University, C.F. Møllers Alle 3, 8000C, Aarhus, Denmark)

  • Jørgen Kjems

    (Aarhus University, C.F. Møllers Alle 3, 8000C, Aarhus, Denmark
    Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wiedsvej 14, 8000C, Aarhus, Denmark)

Abstract

A natural circular RNA termed ciRS-7 is shown to function as a negative regulator of microRNA; ciRS-7 acts as an efficient sponge for the microRNA miR-7, and is resistant to the usual microRNA-mediated degradation pathway of exonucleolytic RNA decay.

Suggested Citation

  • Thomas B. Hansen & Trine I. Jensen & Bettina H. Clausen & Jesper B. Bramsen & Bente Finsen & Christian K. Damgaard & Jørgen Kjems, 2013. "Natural RNA circles function as efficient microRNA sponges," Nature, Nature, vol. 495(7441), pages 384-388, March.
  • Handle: RePEc:nat:nature:v:495:y:2013:i:7441:d:10.1038_nature11993
    DOI: 10.1038/nature11993
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature11993
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature11993?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Humberto J. Ferreira & Brian J. Stevenson & HuiSong Pak & Fengchao Yu & Jessica Almeida Oliveira & Florian Huber & Marie Taillandier-Coindard & Justine Michaux & Emma Ricart-Altimiras & Anne I. Kraeme, 2024. "Immunopeptidomics-based identification of naturally presented non-canonical circRNA-derived peptides," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Yu Dong & Qian Gao & Yong Chen & Zhao Zhang & Yanhua Du & Yuan Liu & Guangxiong Zhang & Shengli Li & Gaoyang Wang & Xiang Chen & Hong Liu & Leng Han & Youqiong Ye, 2023. "Identification of CircRNA signature associated with tumor immune infiltration to predict therapeutic efficacy of immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Bin Li & Wen-Wu Bai & Tao Guo & Zhen-Yu Tang & Xue-Jiao Jing & Ti-Chao Shan & Sen Yin & Ying Li & Fu Wang & Mo-Li Zhu & Jun-Xiu Lu & Yong-Ping Bai & Bo Dong & Peng Li & Shuang-Xi Wang, 2024. "Statins improve cardiac endothelial function to prevent heart failure with preserved ejection fraction through upregulating circRNA-RBCK1," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Zhenzhen Chen & Qiankun He & Tiankun Lu & Jiayi Wu & Gaoli Shi & Luyun He & Hong Zong & Benyu Liu & Pingping Zhu, 2023. "mcPGK1-dependent mitochondrial import of PGK1 promotes metabolic reprogramming and self-renewal of liver TICs," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Federica Conte & Giulia Fiscon & Matteo Chiara & Teresa Colombo & Lorenzo Farina & Paola Paci, 2017. "Role of the long non-coding RNA PVT1 in the dysregulation of the ceRNA-ceRNA network in human breast cancer," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-22, February.
    6. Steffen Fuchs & Clara Danßmann & Filippos Klironomos & Annika Winkler & Jörg Fallmann & Louisa-Marie Kruetzfeldt & Annabell Szymansky & Julian Naderi & Stephan H. Bernhart & Laura Grunewald & Konstant, 2023. "Defining the landscape of circular RNAs in neuroblastoma unveils a global suppressive function of MYCN," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    7. Ting-Ting He & Yun-Fan Xu & Xiang Li & Xia Wang & Jie-Yu Li & Dan Ou-Yang & Han-Sen Cheng & Hao-Yang Li & Jia Qin & Yu Huang & Hai-Yan Wang, 2023. "A linear and circular dual-conformation noncoding RNA involved in oxidative stress tolerance in Bacillus altitudinis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Xiujuan Lei & Wenxiang Zhang, 2019. "BRWSP: Predicting circRNA-Disease Associations Based on Biased Random Walk to Search Paths on a Multiple Heterogeneous Network," Complexity, Hindawi, vol. 2019, pages 1-12, November.
    9. Xiaojuan Fan & Yun Yang & Chuyun Chen & Zefeng Wang, 2022. "Pervasive translation of circular RNAs driven by short IRES-like elements," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Mateja Rybiczka-Tešulov & Oxana Garritsen & Morten T. Venø & Laura Wieg & Roland van Dijk & Karim Rahimi & Andreia Gomes-Duarte & Marina de Wit & Lieke L. Haar & Lars Michels & Nicky C. H. van Kronenb, 2024. "Circular RNAs regulate neuron size and migration of midbrain dopamine neurons during development," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    11. Roberta Piras & Emily Y. Ko & Connor Barrett & Marco Simone & Xianzhi Lin & Marina T. Broz & Fernando H. G. Tessaro & Mireia Castillo-Martin & Carlos Cordon-Cardo & Helen S. Goodridge & Dolores Vizio , 2022. "circCsnk1g3- and circAnkib1-regulated interferon responses in sarcoma promote tumorigenesis by shaping the immune microenvironment," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:495:y:2013:i:7441:d:10.1038_nature11993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.