IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v494y2013i7438d10.1038_nature11871.html
   My bibliography  Save this article

Crystal structure of the entire respiratory complex I

Author

Listed:
  • Rozbeh Baradaran

    (Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK)

  • John M. Berrisford

    (Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
    Present address: European Bioinformatics Institute, Cambridge CB10 1SD, UK.)

  • Gurdeep S. Minhas

    (Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK)

  • Leonid A. Sazanov

    (Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK)

Abstract

Complex I is the first and largest enzyme of the respiratory chain and has a central role in cellular energy production through the coupling of NADH:ubiquinone electron transfer to proton translocation. It is also implicated in many common human neurodegenerative diseases. Here, we report the first crystal structure of the entire, intact complex I (from Thermus thermophilus) at 3.3 Å resolution. The structure of the 536-kDa complex comprises 16 different subunits, with a total of 64 transmembrane helices and 9 iron–sulphur clusters. The core fold of subunit Nqo8 (ND1 in humans) is, unexpectedly, similar to a half-channel of the antiporter-like subunits. Small subunits nearby form a linked second half-channel, which completes the fourth proton-translocation pathway (present in addition to the channels in three antiporter-like subunits). The quinone-binding site is unusually long, narrow and enclosed. The quinone headgroup binds at the deep end of this chamber, near iron–sulphur cluster N2. Notably, the chamber is linked to the fourth channel by a ‘funnel’ of charged residues. The link continues over the entire membrane domain as a flexible central axis of charged and polar residues, and probably has a leading role in the propagation of conformational changes, aided by coupling elements. The structure suggests that a unique, out-of-the-membrane quinone-reaction chamber enables the redox energy to drive concerted long-range conformational changes in the four antiporter-like domains, resulting in translocation of four protons per cycle.

Suggested Citation

  • Rozbeh Baradaran & John M. Berrisford & Gurdeep S. Minhas & Leonid A. Sazanov, 2013. "Crystal structure of the entire respiratory complex I," Nature, Nature, vol. 494(7438), pages 443-448, February.
  • Handle: RePEc:nat:nature:v:494:y:2013:i:7438:d:10.1038_nature11871
    DOI: 10.1038/nature11871
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature11871
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature11871?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ralf Steinhilper & Gabriele Höff & Johann Heider & Bonnie J. Murphy, 2022. "Structure of the membrane-bound formate hydrogenlyase complex from Escherichia coli," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Kun-Xu Teng & Li-Ya Niu & Nan Xie & Qing-Zheng Yang, 2022. "Supramolecular photodynamic agents for simultaneous oxidation of NADH and generation of superoxide radical," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Luis E. Valentin-Alvarado & Kathryn E. Appler & Valerie Anda & Marie C. Schoelmerich & Jacob West-Roberts & Veronika Kivenson & Alexander Crits-Christoph & Lynn Ly & Rohan Sachdeva & Chris Greening & , 2024. "Asgard archaea modulate potential methanogenesis substrates in wetland soil," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Pankaj Sharma & Elena Maklashina & Markus Voehler & Sona Balintova & Sarka Dvorakova & Michal Kraus & Katerina Hadrava Vanova & Zuzana Nahacka & Renata Zobalova & Stepana Boukalova & Kristyna Cunatova, 2024. "Disordered-to-ordered transitions in assembly factors allow the complex II catalytic subunit to switch binding partners," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Yongsung Lee & Chung Hyun Cho & Chanyoung Noh & Ji Hyun Yang & Seung In Park & Yu Min Lee & John A. West & Debashish Bhattacharya & Kyubong Jo & Hwan Su Yoon, 2023. "Origin of minicircular mitochondrial genomes in red algae," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:494:y:2013:i:7438:d:10.1038_nature11871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.