A vaccine strategy that protects against genital herpes by establishing local memory T cells
Author
Abstract
Suggested Citation
DOI: 10.1038/nature11522
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jia He & Chaoyu Wang & Xiao Fang & Junyao Li & Xueying Shen & Junxia Zhang & Cheng Peng & Hongjian Li & Sai Li & Jeffrey M. Karp & Rui Kuai, 2024. "Tuning the fluidity and protein corona of ultrasound-responsive liposomal nanovaccines to program T cell immunity in mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Joshua T Schiffer & David A Swan & Amalia Magaret & Timothy W Schacker & Anna Wald & Lawrence Corey, 2016. "Mathematical Modeling Predicts that Increased HSV-2 Shedding in HIV-1 Infected Persons Is Due to Poor Immunologic Control in Ganglia and Genital Mucosa," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-22, June.
- Kwang Hyun Ko & Hyun Shik Bae & Jeong Woo Park & Jin-Sun Lee & Somin Park & Jun Heo & Hyunsoo Park & Jaeseok Choi & Eunseo Bae & Woonsung Na & Seong-Hyun Park & Baik-Lin Seong & Seung Hyun Han & Dong-, 2024. "A vaccine platform targeting lung-resident memory CD4+ T-cells provides protection against heterosubtypic influenza infections in mice and ferrets," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
- Anneliese S. Ashhurst & Matt D. Johansen & Joshua W. C. Maxwell & Skye Stockdale & Caroline L. Ashley & Anupriya Aggarwal & Rezwan Siddiquee & Stefan Miemczyk & Duc H. Nguyen & Joel P. Mackay & Claudi, 2022. "Mucosal TLR2-activating protein-based vaccination induces potent pulmonary immunity and protection against SARS-CoV-2 in mice," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
- Hongbin Wang & Carol Hoffman & Xinghong Yang & Beata Clapp & David W Pascual, 2020. "Targeting resident memory T cell immunity culminates in pulmonary and systemic protection against Brucella infection," PLOS Pathogens, Public Library of Science, vol. 16(1), pages 1-31, January.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:491:y:2012:i:7424:d:10.1038_nature11522. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.