IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v488y2012i7409d10.1038_nature11336.html
   My bibliography  Save this article

Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota

Author

Listed:
  • Davide Bulgarelli

    (Max Planck Institute for Plant Breeding Research)

  • Matthias Rott

    (Max Planck Institute for Plant Breeding Research)

  • Klaus Schlaeppi

    (Max Planck Institute for Plant Breeding Research)

  • Emiel Ver Loren van Themaat

    (Max Planck Institute for Plant Breeding Research)

  • Nahal Ahmadinejad

    (Max Planck Institute for Plant Breeding Research
    Present addresses: INRES - Crop Bioinformatics, University of Bonn, 53115 Bonn, Germany (N.A.); Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany (P.R.).)

  • Federica Assenza

    (Max Planck Institute for Plant Breeding Research)

  • Philipp Rauf

    (Max Planck Institute for Plant Breeding Research
    Present addresses: INRES - Crop Bioinformatics, University of Bonn, 53115 Bonn, Germany (N.A.); Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany (P.R.).)

  • Bruno Huettel

    (Max Planck Genome Centre, Max Planck Institute for Plant Breeding Research)

  • Richard Reinhardt

    (Max Planck Genome Centre, Max Planck Institute for Plant Breeding Research)

  • Elmon Schmelzer

    (Central Microscopy, Max Planck Institute for Plant Breeding Research)

  • Joerg Peplies

    (Ribocon GmbH)

  • Frank Oliver Gloeckner

    (Ribocon GmbH
    Max Planck Institute for Marine Microbiology)

  • Rudolf Amann

    (Max Planck Institute for Marine Microbiology)

  • Thilo Eickhorst

    (Soil Science, Faculty of Biology and Chemistry, University of Bremen)

  • Paul Schulze-Lefert

    (Max Planck Institute for Plant Breeding Research)

Abstract

Roots of land plants are populated by a specific microbiota capable of modulating plant growth and development; here large-scale sequencing analysis shows that the bacterial community inhabiting Arabidopsis roots is influenced by soil type and plant genotype, and that plant cell-wall features serve as colonization cue for a subcommunity of the root microbiota.

Suggested Citation

  • Davide Bulgarelli & Matthias Rott & Klaus Schlaeppi & Emiel Ver Loren van Themaat & Nahal Ahmadinejad & Federica Assenza & Philipp Rauf & Bruno Huettel & Richard Reinhardt & Elmon Schmelzer & Joerg Pe, 2012. "Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota," Nature, Nature, vol. 488(7409), pages 91-95, August.
  • Handle: RePEc:nat:nature:v:488:y:2012:i:7409:d:10.1038_nature11336
    DOI: 10.1038/nature11336
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature11336
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature11336?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feiyun Xu & Hanpeng Liao & Jinyong Yang & Yingjiao Zhang & Peng Yu & Yiying Cao & Ju Fang & Shu Chen & Liang Li & Leyun Sun & Chongxuan Du & Ke Wang & Xiaolin Dang & Zhiwei Feng & Yifan Cao & Ying Li , 2023. "Auxin-producing bacteria promote barley rhizosheath formation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Carmen Escudero-Martinez & Max Coulter & Rodrigo Alegria Terrazas & Alexandre Foito & Rumana Kapadia & Laura Pietrangelo & Mauro Maver & Rajiv Sharma & Alessio Aprile & Jenny Morris & Pete E. Hedley &, 2022. "Identifying plant genes shaping microbiota composition in the barley rhizosphere," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Adina Howe & Nejc Stopnisek & Shane K. Dooley & Fan Yang & Keara L. Grady & Ashley Shade, 2023. "Seasonal activities of the phyllosphere microbiome of perennial crops," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Mingxing Wang & An-Hui Ge & Xingzhu Ma & Xiaolin Wang & Qiujin Xie & Like Wang & Xianwei Song & Mengchen Jiang & Weibing Yang & Jeremy D. Murray & Yayu Wang & Huan Liu & Xiaofeng Cao & Ertao Wang, 2024. "Dynamic root microbiome sustains soybean productivity under unbalanced fertilization," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Zhaohui Cao & Wenlong Zuo & Lanxiang Wang & Junyu Chen & Zepeng Qu & Fan Jin & Lei Dai, 2023. "Spatial profiling of microbial communities by sequential FISH with error-robust encoding," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Zhenghong Wang & Zewen Li & Yujie Zhang & Jingye Liao & Kaixiang Guan & Jingxuan Zhai & Pengfei Meng & Xianli Tang & Tao Dong & Yi Song, 2024. "Root hair developmental regulators orchestrate drought triggered microbiome changes and the interaction with beneficial Rhizobiaceae," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Hao Zhang & Zi-Wei Hua & Wen-Zhi Liang & Qiu-Hong Niu & Xiang Wang, 2020. "The Prevention of Bio-Organic Fertilizer Fermented from Cow Manure Compost by Bacillus sp. XG-1 on Watermelon Continuous Cropping Barrier," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
    8. Yunpeng Liu & Huihui Zhang & Jing Wang & Wenting Gao & Xiting Sun & Qin Xiong & Xia Shu & Youzhi Miao & Qirong Shen & Weibing Xun & Ruifu Zhang, 2024. "Nonpathogenic Pseudomonas syringae derivatives and its metabolites trigger the plant “cry for help” response to assemble disease suppressing and growth promoting rhizomicrobiome," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Yanfen Zheng & Xuwen Cao & Yanan Zhou & Siqi Ma & Youqiang Wang & Zhe Li & Donglin Zhao & Yanzhe Yang & Han Zhang & Chen Meng & Zhihong Xie & Xiaona Sui & Kangwen Xu & Yiqiang Li & Cheng-Sheng Zhang, 2024. "Purines enrich root-associated Pseudomonas and improve wild soybean growth under salt stress," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Carla L. Abán & Giovanni Larama & Antonella Ducci & Jorgelina Huidobro & Michel Abanto & Silvina Vargas-Gil & Carolina Pérez-Brandan, 2022. "Soil Properties and Bacterial Communities Associated with the Rhizosphere of the Common Bean after Using Brachiaria brizantha as a Service Crop: A 10-Year Field Experiment," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    11. Wenli Zhang & Yubing Liu & Zengru Wang & Lina Zhao & Jinghua Qi & Yansong Wang & Pan Zhao & Naiqin Zhong, 2020. "Short-Term Effects of Eco-Friendly Fertilizers on a Soil Bacterial Community in the Topsoil and Rhizosphere of an Irrigated Agroecosystem," Sustainability, MDPI, vol. 12(12), pages 1-16, June.
    12. Nicholas Ozede Igiehon & Olubukola Oluranti Babalola, 2018. "Rhizosphere Microbiome Modulators: Contributions of Nitrogen Fixing Bacteria towards Sustainable Agriculture," IJERPH, MDPI, vol. 15(4), pages 1-25, March.
    13. Ke Tao & Ib T. Jensen & Sha Zhang & Eber Villa-Rodríguez & Zuzana Blahovska & Camilla Lind Salomonsen & Anna Martyn & Þuríður Nótt Björgvinsdóttir & Simon Kelly & Luc Janss & Marianne Glasius & Rasmus, 2024. "Nitrogen and Nod factor signaling determine Lotus japonicus root exudate composition and bacterial assembly," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Luigi Russi & Gianpiero Marconi & Nicoletta Ferradini & Beatrice Farda & Marika Pellegrini & Loretta Pace, 2022. "Investigating Population Genetic Diversity and Rhizosphere Microbiota of Central Apennines’ Artemisia eriantha," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    15. Amrita Gupta & Udai B. Singh & Pramod K. Sahu & Surinder Paul & Adarsh Kumar & Deepti Malviya & Shailendra Singh & Pandiyan Kuppusamy & Prakash Singh & Diby Paul & Jai P. Rai & Harsh V. Singh & Madhab, 2022. "Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review," IJERPH, MDPI, vol. 19(5), pages 1-29, March.
    16. Ziwei Tao & Jinjuan Li & Hui Li & Guozhen Du, 2024. "Effects of High-Density Mixed Planting in Artificial Grassland on Microbial Community," Sustainability, MDPI, vol. 16(21), pages 1-16, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:488:y:2012:i:7409:d:10.1038_nature11336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.