IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40916-4.html
   My bibliography  Save this article

Auxin-producing bacteria promote barley rhizosheath formation

Author

Listed:
  • Feiyun Xu

    (Fujian Agriculture and Forestry University)

  • Hanpeng Liao

    (Fujian Agriculture and Forestry University)

  • Jinyong Yang

    (Fujian Agriculture and Forestry University)

  • Yingjiao Zhang

    (Fujian Agriculture and Forestry University
    Minjiang University)

  • Peng Yu

    (University of Bonn
    University of Bonn)

  • Yiying Cao

    (Fujian Agriculture and Forestry University)

  • Ju Fang

    (Fujian Agriculture and Forestry University)

  • Shu Chen

    (Fujian Agriculture and Forestry University)

  • Liang Li

    (Fujian Agriculture and Forestry University)

  • Leyun Sun

    (Fujian Agriculture and Forestry University)

  • Chongxuan Du

    (Fujian Agriculture and Forestry University)

  • Ke Wang

    (Fujian Agriculture and Forestry University)

  • Xiaolin Dang

    (Fujian Agriculture and Forestry University)

  • Zhiwei Feng

    (Fujian Agriculture and Forestry University)

  • Yifan Cao

    (Yangzhou University)

  • Ying Li

    (Yangzhou University)

  • Jianhua Zhang

    (The Chinese University of Hong Kong)

  • Weifeng Xu

    (Fujian Agriculture and Forestry University)

Abstract

The rhizosheath, or the layer of soil closely adhering to roots, can help plants to tolerate drought under moderate soil drying conditions. Rhizosheath formation is the result of poorly understood interactions between root exudates, microbes, and soil conditions. Here, we study the roles played by the soil microbiota in rhizosheath formation in barley (a dry crop). We show that barley rhizosheath formation is greater in acid soil than in alkaline soil, and inoculation with microbiota from acid soil enhances rhizosheath formation in alkaline soil. The rhizosheath-promoting activity is associated with the presence of Flavobacteriaceae and Paenibacillaceae bacteria that express genes for biosynthesis of indole-3-acetic acid (IAA, a common auxin), as determined by metagenomics and metatranscriptomics. Two bacterial strains isolated from rhizosheath (Chryseobacterium culicis and Paenibacillus polymyxa) produce IAA and enhance barley rhizosheath formation, while their IAA-defective mutants are unable to promote rhizosheath formation. Co-inoculation with the IAA-producing strains enhances barley grain yield in field experiments through an increase in spike number. Our findings contribute to our understanding of barley rhizosheath formation, and suggest potential strategies for crop improvement.

Suggested Citation

  • Feiyun Xu & Hanpeng Liao & Jinyong Yang & Yingjiao Zhang & Peng Yu & Yiying Cao & Ju Fang & Shu Chen & Liang Li & Leyun Sun & Chongxuan Du & Ke Wang & Xiaolin Dang & Zhiwei Feng & Yifan Cao & Ying Li , 2023. "Auxin-producing bacteria promote barley rhizosheath formation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40916-4
    DOI: 10.1038/s41467-023-40916-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40916-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40916-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Davide Bulgarelli & Matthias Rott & Klaus Schlaeppi & Emiel Ver Loren van Themaat & Nahal Ahmadinejad & Federica Assenza & Philipp Rauf & Bruno Huettel & Richard Reinhardt & Elmon Schmelzer & Joerg Pe, 2012. "Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota," Nature, Nature, vol. 488(7409), pages 91-95, August.
    2. Javier Martínez Pacheco & Philippe Ranocha & Luciana Kasulin & Corina M. Fusari & Lucas Servi & Ariel. A. Aptekmann & Victoria Berdion Gabarain & Juan Manuel Peralta & Cecilia Borassi & Eliana Marzol , 2022. "Apoplastic class III peroxidases PRX62 and PRX69 promote Arabidopsis root hair growth at low temperature," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingxing Wang & An-Hui Ge & Xingzhu Ma & Xiaolin Wang & Qiujin Xie & Like Wang & Xianwei Song & Mengchen Jiang & Weibing Yang & Jeremy D. Murray & Yayu Wang & Huan Liu & Xiaofeng Cao & Ertao Wang, 2024. "Dynamic root microbiome sustains soybean productivity under unbalanced fertilization," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Zhang & Zi-Wei Hua & Wen-Zhi Liang & Qiu-Hong Niu & Xiang Wang, 2020. "The Prevention of Bio-Organic Fertilizer Fermented from Cow Manure Compost by Bacillus sp. XG-1 on Watermelon Continuous Cropping Barrier," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
    2. Zhaohui Cao & Wenlong Zuo & Lanxiang Wang & Junyu Chen & Zepeng Qu & Fan Jin & Lei Dai, 2023. "Spatial profiling of microbial communities by sequential FISH with error-robust encoding," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Luigi Russi & Gianpiero Marconi & Nicoletta Ferradini & Beatrice Farda & Marika Pellegrini & Loretta Pace, 2022. "Investigating Population Genetic Diversity and Rhizosphere Microbiota of Central Apennines’ Artemisia eriantha," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    4. Amrita Gupta & Udai B. Singh & Pramod K. Sahu & Surinder Paul & Adarsh Kumar & Deepti Malviya & Shailendra Singh & Pandiyan Kuppusamy & Prakash Singh & Diby Paul & Jai P. Rai & Harsh V. Singh & Madhab, 2022. "Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review," IJERPH, MDPI, vol. 19(5), pages 1-29, March.
    5. Mingxing Wang & An-Hui Ge & Xingzhu Ma & Xiaolin Wang & Qiujin Xie & Like Wang & Xianwei Song & Mengchen Jiang & Weibing Yang & Jeremy D. Murray & Yayu Wang & Huan Liu & Xiaofeng Cao & Ertao Wang, 2024. "Dynamic root microbiome sustains soybean productivity under unbalanced fertilization," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Yanfen Zheng & Xuwen Cao & Yanan Zhou & Siqi Ma & Youqiang Wang & Zhe Li & Donglin Zhao & Yanzhe Yang & Han Zhang & Chen Meng & Zhihong Xie & Xiaona Sui & Kangwen Xu & Yiqiang Li & Cheng-Sheng Zhang, 2024. "Purines enrich root-associated Pseudomonas and improve wild soybean growth under salt stress," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Ke Tao & Ib T. Jensen & Sha Zhang & Eber Villa-Rodríguez & Zuzana Blahovska & Camilla Lind Salomonsen & Anna Martyn & Þuríður Nótt Björgvinsdóttir & Simon Kelly & Luc Janss & Marianne Glasius & Rasmus, 2024. "Nitrogen and Nod factor signaling determine Lotus japonicus root exudate composition and bacterial assembly," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Adina Howe & Nejc Stopnisek & Shane K. Dooley & Fan Yang & Keara L. Grady & Ashley Shade, 2023. "Seasonal activities of the phyllosphere microbiome of perennial crops," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Yunpeng Liu & Huihui Zhang & Jing Wang & Wenting Gao & Xiting Sun & Qin Xiong & Xia Shu & Youzhi Miao & Qirong Shen & Weibing Xun & Ruifu Zhang, 2024. "Nonpathogenic Pseudomonas syringae derivatives and its metabolites trigger the plant “cry for help” response to assemble disease suppressing and growth promoting rhizomicrobiome," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Carla L. Abán & Giovanni Larama & Antonella Ducci & Jorgelina Huidobro & Michel Abanto & Silvina Vargas-Gil & Carolina Pérez-Brandan, 2022. "Soil Properties and Bacterial Communities Associated with the Rhizosphere of the Common Bean after Using Brachiaria brizantha as a Service Crop: A 10-Year Field Experiment," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    11. Carmen Escudero-Martinez & Max Coulter & Rodrigo Alegria Terrazas & Alexandre Foito & Rumana Kapadia & Laura Pietrangelo & Mauro Maver & Rajiv Sharma & Alessio Aprile & Jenny Morris & Pete E. Hedley &, 2022. "Identifying plant genes shaping microbiota composition in the barley rhizosphere," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Wenli Zhang & Yubing Liu & Zengru Wang & Lina Zhao & Jinghua Qi & Yansong Wang & Pan Zhao & Naiqin Zhong, 2020. "Short-Term Effects of Eco-Friendly Fertilizers on a Soil Bacterial Community in the Topsoil and Rhizosphere of an Irrigated Agroecosystem," Sustainability, MDPI, vol. 12(12), pages 1-16, June.
    13. Nicholas Ozede Igiehon & Olubukola Oluranti Babalola, 2018. "Rhizosphere Microbiome Modulators: Contributions of Nitrogen Fixing Bacteria towards Sustainable Agriculture," IJERPH, MDPI, vol. 15(4), pages 1-25, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40916-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.