IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v485y2012i7397d10.1038_nature11010.html
   My bibliography  Save this article

Molecular mechanism of ATP binding and ion channel activation in P2X receptors

Author

Listed:
  • Motoyuki Hattori

    (Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA)

  • Eric Gouaux

    (Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
    Howard Hughes Medical Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA)

Abstract

P2X receptors are trimeric ATP-activated ion channels permeable to Na+, K+ and Ca2+. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure of the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body β-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.

Suggested Citation

  • Motoyuki Hattori & Eric Gouaux, 2012. "Molecular mechanism of ATP binding and ion channel activation in P2X receptors," Nature, Nature, vol. 485(7397), pages 207-212, May.
  • Handle: RePEc:nat:nature:v:485:y:2012:i:7397:d:10.1038_nature11010
    DOI: 10.1038/nature11010
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature11010
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature11010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li-Dong Huang & Ying-Zhe Fan & Yun Tian & Yang Yang & Yan Liu & Jin Wang & Wen-Shan Zhao & Wen-Chao Zhou & Xiao-Yang Cheng & Peng Cao & Xiang-Yang Lu & Ye Yu, 2014. "Inherent Dynamics of Head Domain Correlates with ATP-Recognition of P2X4 Receptors: Insights Gained from Molecular Simulations," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-11, May.
    2. Laurent Mackay & Hana Zemkova & Stanko S Stojilkovic & Arthur Sherman & Anmar Khadra, 2017. "Deciphering the regulation of P2X4 receptor channel gating by ivermectin using Markov models," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-27, July.
    3. Chang-Run Guo & Zhong-Zhe Zhang & Xing Zhou & Meng-Yang Sun & Tian-Tian Li & Yun-Tao Lei & Yu-Hao Gao & Qing-Quan Li & Chen-Xi Yue & Yu Gao & Yi-Yu Lin & Cui-Yun Hao & Chang-Zhu Li & Peng Cao & Michae, 2023. "Chronic cough relief by allosteric modulation of P2X3 without taste disturbance," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Cheng Shen & Yuqing Zhang & Wenwen Cui & Yimeng Zhao & Danqi Sheng & Xinyu Teng & Miaoqing Shao & Muneyoshi Ichikawa & Jin Wang & Motoyuki Hattori, 2023. "Structural insights into the allosteric inhibition of P2X4 receptors," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Hailiang Li & Zhiyi Li & Xin Yuan & Yue Tian & Wenjing Ye & Pengyu Zeng & Xiao-Ming Li & Fang Guo, 2024. "Dynamic encoding of temperature in the central circadian circuit coordinates physiological activities," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:485:y:2012:i:7397:d:10.1038_nature11010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.