IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52636-4.html
   My bibliography  Save this article

Cryo-EM structures of the human P2X1 receptor reveal subtype-specific architecture and antagonism by supramolecular ligand-binding

Author

Listed:
  • Adam C. Oken

    (Oregon Health & Science University)

  • Nicolas E. Lisi

    (Oregon Health & Science University)

  • Ismayn A. Ditter

    (Oregon Health & Science University)

  • Haoyuan Shi

    (Oregon Health & Science University)

  • Nadia A. Nechiporuk

    (Oregon Health & Science University)

  • Steven E. Mansoor

    (Oregon Health & Science University
    Oregon Health & Science University)

Abstract

P2X receptors are a family of seven trimeric non-selective cation channels that are activated by extracellular ATP to play roles in the cardiovascular, neuronal, and immune systems. Although it is known that the P2X1 receptor subtype has increased sensitivity to ATP and fast desensitization kinetics, an underlying molecular explanation for these subtype-selective features is lacking. Here we report high-resolution cryo-EM structures of the human P2X1 receptor in the apo closed, ATP-bound desensitized, and the high-affinity antagonist NF449-bound inhibited states. The apo closed and ATP-bound desensitized state structures of human P2X1 define subtype-specific properties such as distinct pore architecture and ATP-interacting residues. The NF449-bound inhibited state structure of human P2X1 reveals that NF449 has a unique dual-ligand supramolecular binding mode at the interface of neighboring protomers, inhibiting channel activation by overlapping with the canonical P2X receptor ATP-binding site. Altogether, these data define the molecular pharmacology of the human P2X1 receptor laying the foundation for structure-based drug design.

Suggested Citation

  • Adam C. Oken & Nicolas E. Lisi & Ismayn A. Ditter & Haoyuan Shi & Nadia A. Nechiporuk & Steven E. Mansoor, 2024. "Cryo-EM structures of the human P2X1 receptor reveal subtype-specific architecture and antagonism by supramolecular ligand-binding," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52636-4
    DOI: 10.1038/s41467-024-52636-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52636-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52636-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Motoyuki Hattori & Eric Gouaux, 2012. "Molecular mechanism of ATP binding and ion channel activation in P2X receptors," Nature, Nature, vol. 485(7397), pages 207-212, May.
    2. Adam C. Oken & Nicolas E. Lisi & Ipsita Krishnamurthy & Alanna E. McCarthy & Michael H. Godsey & Arthur Glasfeld & Steven E. Mansoor, 2024. "High-affinity agonism at the P2X7 receptor is mediated by three residues outside the orthosteric pocket," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Toshimitsu Kawate & Jennifer Carlisle Michel & William T. Birdsong & Eric Gouaux, 2009. "Crystal structure of the ATP-gated P2X4 ion channel in the closed state," Nature, Nature, vol. 460(7255), pages 592-598, July.
    4. Cheng Shen & Yuqing Zhang & Wenwen Cui & Yimeng Zhao & Danqi Sheng & Xinyu Teng & Miaoqing Shao & Muneyoshi Ichikawa & Jin Wang & Motoyuki Hattori, 2023. "Structural insights into the allosteric inhibition of P2X4 receptors," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Liu-Pan Yang & Li Zhang & Mao Quan & Jas S. Ward & Yan-Long Ma & Hang Zhou & Kari Rissanen & Wei Jiang, 2020. "A supramolecular system that strictly follows the binding mechanism of conformational selection," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng Shen & Yuqing Zhang & Wenwen Cui & Yimeng Zhao & Danqi Sheng & Xinyu Teng & Miaoqing Shao & Muneyoshi Ichikawa & Jin Wang & Motoyuki Hattori, 2023. "Structural insights into the allosteric inhibition of P2X4 receptors," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Yi-Yu Lin & Yan Lu & Chun-Yun Li & Xue-Fei Ma & Miao-Qing Shao & Yu-Hao Gao & Yu-Qing Zhang & Hai-Ning Jiang & Yan Liu & Yang Yang & Li-Dong Huang & Peng Cao & Heng-Shan Wang & Jin Wang & Ye Yu, 2024. "Finely ordered intracellular domain harbors an allosteric site to modulate physiopathological function of P2X3 receptors," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Chang-Run Guo & Zhong-Zhe Zhang & Xing Zhou & Meng-Yang Sun & Tian-Tian Li & Yun-Tao Lei & Yu-Hao Gao & Qing-Quan Li & Chen-Xi Yue & Yu Gao & Yi-Yu Lin & Cui-Yun Hao & Chang-Zhu Li & Peng Cao & Michae, 2023. "Chronic cough relief by allosteric modulation of P2X3 without taste disturbance," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Felix M. Bennetts & Hariprasad Venugopal & Alisa Glukhova & Jesse I. Mobbs & Sabatino Ventura & David M. Thal, 2024. "Structural insights into the human P2X1 receptor and ligand interactions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Adam C. Oken & Nicolas E. Lisi & Ipsita Krishnamurthy & Alanna E. McCarthy & Michael H. Godsey & Arthur Glasfeld & Steven E. Mansoor, 2024. "High-affinity agonism at the P2X7 receptor is mediated by three residues outside the orthosteric pocket," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Xin Sun & Jin-Ku Bai & Yu-Dong Yang & Ke-Lin Zhu & Jia-Qi Liang & Xin-Yue Wang & Jun-Feng Xiang & Xiang Hao & Tong-Ling Liang & Ai-Jiao Guan & Ning-Ning Wu & Han-Yuan Gong, 2024. "Controlled interconversion of macrocyclic atropisomers via defined intermediates," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Laurent Mackay & Hana Zemkova & Stanko S Stojilkovic & Arthur Sherman & Anmar Khadra, 2017. "Deciphering the regulation of P2X4 receptor channel gating by ivermectin using Markov models," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-27, July.
    8. Li-Dong Huang & Ying-Zhe Fan & Yun Tian & Yang Yang & Yan Liu & Jin Wang & Wen-Shan Zhao & Wen-Chao Zhou & Xiao-Yang Cheng & Peng Cao & Xiang-Yang Lu & Ye Yu, 2014. "Inherent Dynamics of Head Domain Correlates with ATP-Recognition of P2X4 Receptors: Insights Gained from Molecular Simulations," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-11, May.
    9. Hailiang Li & Zhiyi Li & Xin Yuan & Yue Tian & Wenjing Ye & Pengyu Zeng & Xiao-Ming Li & Fang Guo, 2024. "Dynamic encoding of temperature in the central circadian circuit coordinates physiological activities," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52636-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.