IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v483y2012i7390d10.1038_nature10904.html
   My bibliography  Save this article

Quantum plasmon resonances of individual metallic nanoparticles

Author

Listed:
  • Jonathan A. Scholl

    (Stanford University)

  • Ai Leen Koh

    (Stanford Nanocharacterization Laboratory, Stanford University)

  • Jennifer A. Dionne

    (Stanford University)

Abstract

The plasmon resonances of metallic nanoparticles have received considerable attention for their applications in nanophotonics, biology, sensing, spectroscopy and solar energy harvesting. Although thoroughly characterized for spheres larger than ten nanometres in diameter, the plasmonic properties of particles in the quantum size regime have been historically difficult to describe owing to weak optical scattering, metal–ligand interactions, and inhomogeneity in ensemble measurements. Such difficulties have precluded probing and controlling the plasmonic properties of quantum-sized particles in many natural and engineered processes, notably catalysis. Here we investigate the plasmon resonances of individual ligand-free silver nanoparticles using aberration-corrected transmission electron microscope (TEM) imaging and monochromated scanning TEM electron energy-loss spectroscopy (EELS). This technique allows direct correlation between a particle’s geometry and its plasmon resonance. As the nanoparticle diameter decreases from 20 nanometres to less than two nanometres, the plasmon resonance shifts to higher energy by 0.5 electronvolts, a substantial deviation from classical predictions. We present an analytical quantum mechanical model that describes this shift due to a change in particle permittivity. Our results highlight the quantum plasmonic properties of small metallic nanospheres, with direct application to understanding and exploiting catalytically active and biologically relevant nanoparticles.

Suggested Citation

  • Jonathan A. Scholl & Ai Leen Koh & Jennifer A. Dionne, 2012. "Quantum plasmon resonances of individual metallic nanoparticles," Nature, Nature, vol. 483(7390), pages 421-427, March.
  • Handle: RePEc:nat:nature:v:483:y:2012:i:7390:d:10.1038_nature10904
    DOI: 10.1038/nature10904
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature10904
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature10904?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giles Allison & Amrita Kumar Sana & Yuta Ogawa & Hidemi Kato & Kosei Ueno & Hiroaki Misawa & Koki Hayashi & Hironori Suzuki, 2021. "A Fabry-Pérot cavity coupled surface plasmon photodiode for electrical biomolecular sensing," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Vito Coviello & Denis Badocco & Paolo Pastore & Martina Fracchia & Paolo Ghigna & Alessandro Martucci & Daniel Forrer & Vincenzo Amendola, 2024. "Accurate prediction of the optical properties of nanoalloys with both plasmonic and magnetic elements," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Yu, Xiyu & Huang, Maoquan & Wang, Xinyu & Sun, Qie & Tang, G.H. & Du, Mu, 2022. "Toward optical selectivity aerogels by plasmonic nanoparticles doping," Renewable Energy, Elsevier, vol. 190(C), pages 741-751.
    4. Sergejs Boroviks & Zhan-Hong Lin & Vladimir A. Zenin & Mario Ziegler & Andrea Dellith & P. A. D. Gonçalves & Christian Wolff & Sergey I. Bozhevolnyi & Jer-Shing Huang & N. Asger Mortensen, 2022. "Extremely confined gap plasmon modes: when nonlocality matters," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:483:y:2012:i:7390:d:10.1038_nature10904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.