IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v483y2012i7389d10.1038_nature10799.html
   My bibliography  Save this article

Genome-wide structure and organization of eukaryotic pre-initiation complexes

Author

Listed:
  • Ho Sung Rhee

    (Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park)

  • B. Franklin Pugh

    (Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park)

Abstract

Transcription and regulation of genes originate from transcription pre-initiation complexes (PICs). Their structural and positional organization across eukaryotic genomes is unknown. Here we applied lambda exonuclease to chromatin immunoprecipitates (termed ChIP-exo) to examine the precise location of 6,045 PICs in Saccharomyces. PICs, including RNA polymerase II and protein complexes TFIIA, TFIIB, TFIID (or TBP), TFIIE, TFIIF, TFIIH and TFIIK were positioned within promoters and excluded from coding regions. Exonuclease patterns were in agreement with crystallographic models of the PIC, and were sufficiently precise to identify TATA-like elements at so-called TATA-less promoters. These PICs and their transcription start sites were positionally constrained at TFIID-engaged downstream +1 nucleosomes. At TATA-box-containing promoters, which are depleted of TFIID, a +1 nucleosome was positioned to be in competition with the PIC, which may allow greater latitude in start-site selection. Our genomic localization of messenger RNA and non-coding RNA PICs reveals that two PICs, in inverted orientation, may occupy the flanking borders of nucleosome-free regions. Their unambiguous detection may help distinguish bona fide genes from transcriptional noise.

Suggested Citation

  • Ho Sung Rhee & B. Franklin Pugh, 2012. "Genome-wide structure and organization of eukaryotic pre-initiation complexes," Nature, Nature, vol. 483(7389), pages 295-301, March.
  • Handle: RePEc:nat:nature:v:483:y:2012:i:7389:d:10.1038_nature10799
    DOI: 10.1038/nature10799
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature10799
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature10799?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vladislav N. Nikolov & Dhara Malavia & Takashi Kubota, 2022. "SWI/SNF and the histone chaperone Rtt106 drive expression of the Pleiotropic Drug Resistance network genes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Jan Zrimec & Xiaozhi Fu & Azam Sheikh Muhammad & Christos Skrekas & Vykintas Jauniskis & Nora K. Speicher & Christoph S. Börlin & Vilhelm Verendel & Morteza Haghir Chehreghani & Devdatt Dubhashi & Ver, 2022. "Controlling gene expression with deep generative design of regulatory DNA," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Brianna J. Klein & Jordan T. Feigerle & Jibo Zhang & Christopher C. Ebmeier & Lixin Fan & Rohit K. Singh & Wesley W. Wang & Lauren R. Schmitt & Thomas Lee & Kirk C. Hansen & Wenshe R. Liu & Yun-Xing W, 2022. "Taf2 mediates DNA binding of Taf14," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Helka Göös & Matias Kinnunen & Kari Salokas & Zenglai Tan & Xiaonan Liu & Leena Yadav & Qin Zhang & Gong-Hong Wei & Markku Varjosalo, 2022. "Human transcription factor protein interaction networks," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Joana Segura & Ofelia Díaz-Ingelmo & Belén Martínez-García & Alba Ayats-Fraile & Christoforos Nikolaou & Joaquim Roca, 2024. "Nucleosomal DNA has topological memory," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:483:y:2012:i:7389:d:10.1038_nature10799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.