IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v483y2012i7388d10.1038_nature10812.html
   My bibliography  Save this article

Piezo proteins are pore-forming subunits of mechanically activated channels

Author

Listed:
  • Bertrand Coste

    (Dorris Neuroscience Center, The Scripps Research Institute)

  • Bailong Xiao

    (Dorris Neuroscience Center, The Scripps Research Institute)

  • Jose S. Santos

    (Section of Neurobiology, University of California San Diego)

  • Ruhma Syeda

    (Section of Neurobiology, University of California San Diego)

  • Jörg Grandl

    (Dorris Neuroscience Center, The Scripps Research Institute
    Present address: Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.)

  • Kathryn S. Spencer

    (Dorris Neuroscience Center, The Scripps Research Institute)

  • Sung Eun Kim

    (Dorris Neuroscience Center, The Scripps Research Institute)

  • Manuela Schmidt

    (Dorris Neuroscience Center, The Scripps Research Institute)

  • Jayanti Mathur

    (Genomic Institute of the Novartis Research Foundation)

  • Adrienne E. Dubin

    (Dorris Neuroscience Center, The Scripps Research Institute)

  • Mauricio Montal

    (Section of Neurobiology, University of California San Diego)

  • Ardem Patapoutian

    (Dorris Neuroscience Center, The Scripps Research Institute
    Genomic Institute of the Novartis Research Foundation)

Abstract

Mechanotransduction has an important role in physiology. Biological processes including sensing touch and sound waves require as-yet-unidentified cation channels that detect pressure. Mouse Piezo1 (MmPiezo1) and MmPiezo2 (also called Fam38a and Fam38b, respectively) induce mechanically activated cationic currents in cells; however, it is unknown whether Piezo proteins are pore-forming ion channels or modulate ion channels. Here we show that Drosophila melanogaster Piezo (DmPiezo, also called CG8486) also induces mechanically activated currents in cells, but through channels with remarkably distinct pore properties including sensitivity to the pore blocker ruthenium red and single channel conductances. MmPiezo1 assembles as a ∼1.2-million-dalton homo-oligomer, with no evidence of other proteins in this complex. Purified MmPiezo1 reconstituted into asymmetric lipid bilayers and liposomes forms ruthenium-red-sensitive ion channels. These data demonstrate that Piezo proteins are an evolutionarily conserved ion channel family involved in mechanotransduction.

Suggested Citation

  • Bertrand Coste & Bailong Xiao & Jose S. Santos & Ruhma Syeda & Jörg Grandl & Kathryn S. Spencer & Sung Eun Kim & Manuela Schmidt & Jayanti Mathur & Adrienne E. Dubin & Mauricio Montal & Ardem Patapout, 2012. "Piezo proteins are pore-forming subunits of mechanically activated channels," Nature, Nature, vol. 483(7388), pages 176-181, March.
  • Handle: RePEc:nat:nature:v:483:y:2012:i:7388:d:10.1038_nature10812
    DOI: 10.1038/nature10812
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature10812
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature10812?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonathan Madar & Namrata Tiwari & Cristina Smith & Divya Sharma & Shanwei Shen & Alsiddig Elmahdi & Liya Y. Qiao, 2023. "Piezo2 regulates colonic mechanical sensitivity in a sex specific manner in mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Aki Teranishi & Misato Mori & Rihoko Ichiki & Satoshi Toda & Go Shioi & Satoru Okuda, 2024. "An actin bracket-induced elastoplastic transition determines epithelial folding irreversibility," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Shilong Yang & Xinwen Miao & Steven Arnold & Boxuan Li & Alan T. Ly & Huan Wang & Matthew Wang & Xiangfu Guo & Medha M. Pathak & Wenting Zhao & Charles D. Cox & Zheng Shi, 2022. "Membrane curvature governs the distribution of Piezo1 in live cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Carlos A. Z. Bassetto & Juergen Pfeffermann & Rohit Yadav & Simon Strassgschwandtner & Toma Glasnov & Francisco Bezanilla & Peter Pohl, 2024. "Photolipid excitation triggers depolarizing optocapacitive currents and action potentials," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Yuqi Qin & Daqi Yu & Dan Wu & Jiangqing Dong & William Thomas Li & Chang Ye & Kai Chit Cheung & Yingyi Zhang & Yun Xu & YongQiang Wang & Yun Stone Shi & Shangyu Dang, 2023. "Cryo-EM structure of TMEM63C suggests it functions as a monomer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Nathan Ronceray & Massimo Spina & Vanessa Hui Yin Chou & Chwee Teck Lim & Andre K. Geim & Slaven Garaj, 2024. "Elastocapillarity-driven 2D nano-switches enable zeptoliter-scale liquid encapsulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Xin Rui Lim & Mohammad M. Abd-Alhaseeb & Michael Ippolito & Masayo Koide & Amanda J. Senatore & Curtis Plante & Ashwini Hariharan & Nick Weir & Thomas A. Longden & Kathryn A. Laprade & James M. Staffo, 2024. "Endothelial Piezo1 channel mediates mechano-feedback control of brain blood flow," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Pei Wang & Katharine K. Miller & Enqi He & Siddhant S. Dhawan & Christopher L. Cunningham & Nicolas Grillet, 2024. "LOXHD1 is indispensable for maintaining TMC1 auditory mechanosensitive channels at the site of force transmission," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    9. Francisco Andrés Peralta & Mélaine Balcon & Adeline Martz & Deniza Biljali & Federico Cevoli & Benoit Arnould & Antoine Taly & Thierry Chataigneau & Thomas Grutter, 2023. "Optical control of PIEZO1 channels," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Jeong Han Lee & Maria C. Perez-Flores & Seojin Park & Hyo Jeong Kim & Yingying Chen & Mincheol Kang & Jennifer Kersigo & Jinsil Choi & Phung N. Thai & Ryan L. Woltz & Dolores Columba Perez-Flores & Gu, 2024. "The Piezo channel is a mechano-sensitive complex component in the mammalian inner ear hair cell," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Sine Yaganoglu & Konstantinos Kalyviotis & Christina Vagena-Pantoula & Dörthe Jülich & Benjamin M. Gaub & Maaike Welling & Tatiana Lopes & Dariusz Lachowski & See Swee Tang & Armando Del Rio Hernandez, 2023. "Highly specific and non-invasive imaging of Piezo1-dependent activity across scales using GenEPi," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Basila Moochickal Assainar & Kaushik Ragunathan & Ryan D. Baldridge, 2024. "Direct observation of autoubiquitination for an integral membrane ubiquitin ligase in ERAD," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Nathalia G. Amado & Elena D. Nosyreva & David Thompson & Thomas J. Egeland & Osita W. Ogujiofor & Michelle Yang & Alexandria N. Fusco & Niccolo Passoni & Jeremy Mathews & Brandi Cantarel & Linda A. Ba, 2024. "PIEZO1 loss-of-function compound heterozygous mutations in the rare congenital human disorder Prune Belly Syndrome," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:483:y:2012:i:7388:d:10.1038_nature10812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.