IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v482y2012i7385d10.1038_nature10803.html
   My bibliography  Save this article

Expression of tumour-specific antigens underlies cancer immunoediting

Author

Listed:
  • Michel DuPage

    (Massachusetts Institute of Technology)

  • Claire Mazumdar

    (Massachusetts Institute of Technology)

  • Leah M. Schmidt

    (Massachusetts Institute of Technology)

  • Ann F. Cheung

    (Massachusetts Institute of Technology)

  • Tyler Jacks

    (Massachusetts Institute of Technology
    Howard Hughes Medical Institute, Massachusetts Institute of Technology)

Abstract

This paper illustrates that immunosurveillance and immunoediting can occur in an oncogene-driven endogenous tumour model provided that the tumours carry strong neoantigens not present in the host.

Suggested Citation

  • Michel DuPage & Claire Mazumdar & Leah M. Schmidt & Ann F. Cheung & Tyler Jacks, 2012. "Expression of tumour-specific antigens underlies cancer immunoediting," Nature, Nature, vol. 482(7385), pages 405-409, February.
  • Handle: RePEc:nat:nature:v:482:y:2012:i:7385:d:10.1038_nature10803
    DOI: 10.1038/nature10803
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature10803
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature10803?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julie M. Mazet & Jagdish N. Mahale & Orion Tong & Robert A. Watson & Ana Victoria Lechuga‐Vieco & Gabriela Pirgova & Vivian W. C. Lau & Moustafa Attar & Lada A. Koneva & Stephen N. Sansom & Benjamin P, 2023. "IFNγ signaling in cytotoxic T cells restricts anti-tumor responses by inhibiting the maintenance and diversity of intra-tumoral stem-like T cells," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    2. Rebecca J. Austin & Jasmin Straube & Rohit Halder & Yashaswini Janardhanan & Claudia Bruedigam & Matthew Witkowski & Leanne Cooper & Amy Porter & Matthias Braun & Fernando Souza-Fonseca-Guimaraes & Si, 2023. "Oncogenic drivers dictate immune control of acute myeloid leukemia," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:482:y:2012:i:7385:d:10.1038_nature10803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.