IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v482y2012i7385d10.1038_nature10794.html
   My bibliography  Save this article

Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway

Author

Listed:
  • Tae-Wuk Kim

    (Carnegie Institution for Science
    Hanyang University, Seoul 133-791, South Korea)

  • Marta Michniewicz

    (Stanford University)

  • Dominique C. Bergmann

    (Stanford University)

  • Zhi-Yong Wang

    (Carnegie Institution for Science)

Abstract

Brassinosteroid inhibits stomatal development by alleviating GSK3-mediated inhibition of a MAPK module, revealing a link between a plant MAPKKK and its upstream regulators, and between brassinosteroid and a specific developmental output.

Suggested Citation

  • Tae-Wuk Kim & Marta Michniewicz & Dominique C. Bergmann & Zhi-Yong Wang, 2012. "Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway," Nature, Nature, vol. 482(7385), pages 419-422, February.
  • Handle: RePEc:nat:nature:v:482:y:2012:i:7385:d:10.1038_nature10794
    DOI: 10.1038/nature10794
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature10794
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature10794?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoyu Guo & Xue Ding & Juan Dong, 2022. "Dichotomy of the BSL phosphatase signaling spatially regulates MAPK components in stomatal fate determination," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Linsan Liu & Sarah B. Jose & Chiara Campoli & Micha M. Bayer & Miguel A. Sánchez-Diaz & Trisha McAllister & Yichun Zhou & Mhmoud Eskan & Linda Milne & Miriam Schreiber & Thomas Batstone & Ian D. Bull , 2022. "Conserved signalling components coordinate epidermal patterning and cuticle deposition in barley," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Wen Shi & Lingyan Wang & Lianmei Yao & Wei Hao & Chao Han & Min Fan & Wenfei Wang & Ming-Yi Bai, 2022. "Spatially patterned hydrogen peroxide orchestrates stomatal development in Arabidopsis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:482:y:2012:i:7385:d:10.1038_nature10794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.