IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v478y2011i7368d10.1038_nature10408.html
   My bibliography  Save this article

A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable

Author

Listed:
  • Hua Tian

    (Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA)

  • Brian Biehs

    (Institute for Human Genetics and Program in Craniofacial and Mesenchymal Biology, UCSF, 513 Parnassus Avenue, San Francisco, California 94143-0442, USA)

  • Søren Warming

    (Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA)

  • Kevin G. Leong

    (Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA)

  • Linda Rangell

    (Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA)

  • Ophir D. Klein

    (Institute for Human Genetics and Program in Craniofacial and Mesenchymal Biology, UCSF, 513 Parnassus Avenue, San Francisco, California 94143-0442, USA)

  • Frederic J. de Sauvage

    (Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA)

Abstract

Stem cells held in reserve Two main epithelial stem-cell pools have been previously identified in the small intestine epithelium, but the relative functions of these two pools and their interrelationship are not well understood. Using genetic lineage tracing and lineage ablation studies in mice, Frederic de Sauvage and colleagues have now found that Lgr5-expressing cells are dispensable for normal intestinal homeostasis — the renewal of the epithelium every few days. In the absence of these cells, Bmi1-expressing cells act as a reserve stem-cell pool and replenish the active Lgr5-expressing stem cells.

Suggested Citation

  • Hua Tian & Brian Biehs & Søren Warming & Kevin G. Leong & Linda Rangell & Ophir D. Klein & Frederic J. de Sauvage, 2011. "A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable," Nature, Nature, vol. 478(7368), pages 255-259, October.
  • Handle: RePEc:nat:nature:v:478:y:2011:i:7368:d:10.1038_nature10408
    DOI: 10.1038/nature10408
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature10408
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature10408?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsunaki Higa & Yasutaka Okita & Akinobu Matsumoto & Shogo Nakayama & Takeru Oka & Osamu Sugahara & Daisuke Koga & Shoichiro Takeishi & Hirokazu Nakatsumi & Naoki Hosen & Sylvie Robine & Makoto M. Take, 2022. "Spatiotemporal reprogramming of differentiated cells underlies regeneration and neoplasia in the intestinal epithelium," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Jina Yun & Simon Hansen & Otto Morris & David T. Madden & Clare Peters Libeu & Arjun J. Kumar & Cameron Wehrfritz & Aaron H. Nile & Yingnan Zhang & Lijuan Zhou & Yuxin Liang & Zora Modrusan & Michelle, 2023. "Senescent cells perturb intestinal stem cell differentiation through Ptk7 induced noncanonical Wnt and YAP signaling," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Adrian On Wah Leung & Andrew Chung Hin Poon & Xue Wang & Chen Feng & Peikai Chen & Zhengfan Zheng & Michael KaiTsun To & Wilson Cheuk Wing Chan & Martin Cheung & Danny Chan, 2024. "Suppression of apoptosis impairs phalangeal joint formation in the pathogenesis of brachydactyly type A1," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Joana Silva & Ferhat Alkan & Sofia Ramalho & Goda Snieckute & Stefan Prekovic & Ana Krotenberg Garcia & Santiago Hernández-Pérez & Rob Kammen & Danielle Barnum & Liesbeth Hoekman & Maarten Altelaar & , 2022. "Ribosome impairment regulates intestinal stem cell identity via ZAKɑ activation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Jeremiah Bernier-Latmani & Cristina Mauri & Rachel Marcone & François Renevey & Stephan Durot & Liqun He & Michael Vanlandewijck & Catherine Maclachlan & Suzel Davanture & Nicola Zamboni & Graham W. K, 2022. "ADAMTS18+ villus tip telocytes maintain a polarized VEGFA signaling domain and fenestrations in nutrient-absorbing intestinal blood vessels," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Yi Liu & Efren Reyes & David Castillo-Azofeifa & Ophir D. Klein & Todd Nystul & Diane L. Barber, 2023. "Intracellular pH dynamics regulates intestinal stem cell lineage specification," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Anna Urciuolo & Giovanni Giuseppe Giobbe & Yixiao Dong & Federica Michielin & Luca Brandolino & Michael Magnussen & Onelia Gagliano & Giulia Selmin & Valentina Scattolini & Paolo Raffa & Paola Caccin , 2023. "Hydrogel-in-hydrogel live bioprinting for guidance and control of organoids and organotypic cultures," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Shamir Montazid & Sheila Bandyopadhyay & Daniel W. Hart & Nan Gao & Brian Johnson & Sri G. Thrumurthy & Dustin J. Penn & Bettina Wernisch & Mukesh Bansal & Philipp M. Altrock & Fabian Rost & Patrycja , 2023. "Adult stem cell activity in naked mole rats for long-term tissue maintenance," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    9. Adam E. Hall & Sebastian Öther-Gee Pohl & Patrizia Cammareri & Stuart Aitken & Nicholas T. Younger & Michela Raponi & Caroline V. Billard & Alfonso Bolado Carrancio & Aslihan Bastem & Paz Freile & Fio, 2022. "RNA splicing is a key mediator of tumour cell plasticity and a therapeutic vulnerability in colorectal cancer," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    10. Mara Martín-Alonso & Sharif Iqbal & Pia M. Vornewald & Håvard T. Lindholm & Mirjam J. Damen & Fernando Martínez & Sigrid Hoel & Alberto Díez-Sánchez & Maarten Altelaar & Pekka Katajisto & Alicia G. Ar, 2021. "Smooth muscle-specific MMP17 (MT4-MMP) regulates the intestinal stem cell niche and regeneration after damage," Nature Communications, Nature, vol. 12(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:478:y:2011:i:7368:d:10.1038_nature10408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.