IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v473y2011i7348d10.1038_nature09968.html
   My bibliography  Save this article

Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity

Author

Listed:
  • Suneng Fu

    (and Nutrition, Harvard School of Public Health)

  • Ling Yang

    (and Nutrition, Harvard School of Public Health)

  • Ping Li

    (and Nutrition, Harvard School of Public Health)

  • Oliver Hofmann

    (Harvard School of Public Health)

  • Lee Dicker

    (Harvard School of Public Health)

  • Winston Hide

    (Harvard School of Public Health)

  • Xihong Lin

    (Harvard School of Public Health)

  • Steven M. Watkins

    (Lipomics Technologies Inc)

  • Alexander R. Ivanov

    (and Nutrition, Harvard School of Public Health)

  • Gökhan S. Hotamisligil

    (and Nutrition, Harvard School of Public Health
    Broad Institute of Harvard and MIT)

Abstract

Lipid metabolism in obesity The function of the endoplasmic reticulum (ER) changes during obesity: in the liver, ER-associated protein synthesis slows down, and genes involved in lipid metabolism are switched on. ER stress is an important factor in obesity, insulin resistance and type 2 diabetes. A possible mechanism for this link has now been identified. Perturbation of fatty acid and lipid metabolism in the ER inhibits the activity of SERCA, the main ER calcium importer. Changing the lipid composition or increasing the amount of SERCA in the ER is shown to relieve the stress and improve glucose homeostasis in vivo.

Suggested Citation

  • Suneng Fu & Ling Yang & Ping Li & Oliver Hofmann & Lee Dicker & Winston Hide & Xihong Lin & Steven M. Watkins & Alexander R. Ivanov & Gökhan S. Hotamisligil, 2011. "Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity," Nature, Nature, vol. 473(7348), pages 528-531, May.
  • Handle: RePEc:nat:nature:v:473:y:2011:i:7348:d:10.1038_nature09968
    DOI: 10.1038/nature09968
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature09968
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature09968?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kasparas Petkevicius & Henrik Palmgren & Matthew S. Glover & Andrea Ahnmark & Anne-Christine Andréasson & Katja Madeyski-Bengtson & Hiroki Kawana & Erik L. Allman & Delaney Kaper & Martin Uhrbom & Lis, 2022. "TLCD1 and TLCD2 regulate cellular phosphatidylethanolamine composition and promote the progression of non-alcoholic steatohepatitis," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Shiyan Liu & Mutian Chen & Yichang Wang & Yuqing Lei & Ting Huang & Yabin Zhang & Sin Man Lam & Huihui Li & Shiqian Qi & Jia Geng & Kefeng Lu, 2023. "The ER calcium channel Csg2 integrates sphingolipid metabolism with autophagy," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Güneş Parlakgül & Song Pang & Leonardo L. Artico & Nina Min & Erika Cagampan & Reyna Villa & Renata L. S. Goncalves & Grace Yankun Lee & C. Shan Xu & Gökhan S. Hotamışlıgil & Ana Paula Arruda, 2024. "Spatial mapping of hepatic ER and mitochondria architecture reveals zonated remodeling in fasting and obesity," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:473:y:2011:i:7348:d:10.1038_nature09968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.