IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v462y2009i7275d10.1038_nature08686.html
   My bibliography  Save this article

Probabilistic assessment of sea level during the last interglacial stage

Author

Listed:
  • Robert E. Kopp

    (Department of Geosciences,
    Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, New Jersey 08544, USA)

  • Frederik J. Simons

    (Department of Geosciences,)

  • Jerry X. Mitrovica

    (Harvard University, Cambridge, Massachusetts 02138, USA)

  • Adam C. Maloof

    (Department of Geosciences,)

  • Michael Oppenheimer

    (Department of Geosciences,
    Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, New Jersey 08544, USA)

Abstract

With polar temperatures ∼3–5 °C warmer than today, the last interglacial stage (∼125 kyr ago) serves as a partial analogue for 1–2 °C global warming scenarios. Geological records from several sites indicate that local sea levels during the last interglacial were higher than today, but because local sea levels differ from global sea level, accurately reconstructing past global sea level requires an integrated analysis of globally distributed data sets. Here we present an extensive compilation of local sea level indicators and a statistical approach for estimating global sea level, local sea levels, ice sheet volumes and their associated uncertainties. We find a 95% probability that global sea level peaked at least 6.6 m higher than today during the last interglacial; it is likely (67% probability) to have exceeded 8.0 m but is unlikely (33% probability) to have exceeded 9.4 m. When global sea level was close to its current level (≥-10 m), the millennial average rate of global sea level rise is very likely to have exceeded 5.6 m kyr-1 but is unlikely to have exceeded 9.2 m kyr-1. Our analysis extends previous last interglacial sea level studies by integrating literature observations within a probabilistic framework that accounts for the physics of sea level change. The results highlight the long-term vulnerability of ice sheets to even relatively low levels of sustained global warming.

Suggested Citation

  • Robert E. Kopp & Frederik J. Simons & Jerry X. Mitrovica & Adam C. Maloof & Michael Oppenheimer, 2009. "Probabilistic assessment of sea level during the last interglacial stage," Nature, Nature, vol. 462(7275), pages 863-867, December.
  • Handle: RePEc:nat:nature:v:462:y:2009:i:7275:d:10.1038_nature08686
    DOI: 10.1038/nature08686
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature08686
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature08686?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harvey, L.D. Danny, 2013. "The potential of wind energy to largely displace existing Canadian fossil fuel and nuclear electricity generation," Energy, Elsevier, vol. 50(C), pages 93-102.
    2. Jonathan Pycroft & Jan Abrell & Juan-Carlos Ciscar, 2016. "The Global Impacts of Extreme Sea-Level Rise: A Comprehensive Economic Assessment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(2), pages 225-253, June.
    3. Joseph Donoghue, 2011. "Sea level history of the northern Gulf of Mexico coast and sea level rise scenarios for the near future," Climatic Change, Springer, vol. 107(1), pages 17-33, July.
    4. Nicholas R. Golledge, 2020. "Long‐term projections of sea‐level rise from ice sheets," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    5. David K. Hutchinson & Laurie Menviel & Katrin J. Meissner & Andrew McC. Hogg, 2024. "East Antarctic warming forced by ice loss during the Last Interglacial," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Gabrielle Thongs, 2019. "Integrating risk perceptions into flood risk management: Trinidad case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(2), pages 593-619, September.
    7. Antonio Martínez-Graña & Diego Gómez & Fernando Santos-Francés & Teresa Bardají & José Luis Goy & Caridad Zazo, 2018. "Analysis of Flood Risk Due to Sea Level Rise in the Menor Sea (Murcia, Spain)," Sustainability, MDPI, vol. 10(3), pages 1-19, March.
    8. Michael Neuman, 2020. "Infrastructure Is Key to Make Cities Sustainable," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    9. Philip Camill & Maryellen Hearn & Krista Bahm & Eileen Johnson, 2012. "Using a boundary organization approach to develop a sea level rise and storm surge impact analysis framework for coastal communities in Maine," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 2(2), pages 111-130, June.
    10. Ciscar, Juan Carlos & Nicholls, Robert & Pycroft, Jonathan, 2012. "The Impacts of Passing Climate Change Tipping Points: A CGE assessment for Europe of rapid sea-level rise," Conference papers 332284, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    11. Jonathan Pycroft & Juan Carlos Ciscar & Robert Nicholls, 2012. "Global Impacts of Sea-level Rise: An assessment with the GEM-E3 model," EcoMod2012 4054, EcoMod.
    12. Michela Biasutti & Adam Sobel & Suzana Camargo & Timothy Creyts, 2012. "Projected changes in the physical climate of the Gulf Coast and Caribbean," Climatic Change, Springer, vol. 112(3), pages 819-845, June.
    13. Randall Parkinson & Peter Harlem & John Meeder, 2015. "Managing the Anthropocene marine transgression to the year 2100 and beyond in the State of Florida U.S.A," Climatic Change, Springer, vol. 128(1), pages 85-98, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:462:y:2009:i:7275:d:10.1038_nature08686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.