IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v451y2008i7181d10.1038_nature06800.html
   My bibliography  Save this article

Stem-cell therapy for cardiac disease

Author

Listed:
  • Vincent F. M. Segers

    (Brigham and Women's Hospital, Harvard Medical School, Partners Research Facility)

  • Richard T. Lee

    (Brigham and Women's Hospital, Harvard Medical School, Partners Research Facility)

Abstract

Heart failure is the leading cause of death worldwide, and current therapies only delay progression of the disease. Laboratory experiments and recent clinical trials suggest that cell-based therapies can improve cardiac function, and the implications of this for cardiac regeneration are causing great excitement. Bone-marrow-derived progenitor cells and other progenitor cells can differentiate into vascular cell types, restoring blood flow. More recently, resident cardiac stem cells have been shown to differentiate into multiple cell types present in the heart, including cardiac muscle cells, indicating that the heart is not terminally differentiated. These new findings have stimulated optimism that the progression of heart failure can be prevented or even reversed with cell-based therapy.

Suggested Citation

  • Vincent F. M. Segers & Richard T. Lee, 2008. "Stem-cell therapy for cardiac disease," Nature, Nature, vol. 451(7181), pages 937-942, February.
  • Handle: RePEc:nat:nature:v:451:y:2008:i:7181:d:10.1038_nature06800
    DOI: 10.1038/nature06800
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature06800
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature06800?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joshua Mayourian & Ruben M Savizky & Eric A Sobie & Kevin D Costa, 2016. "Modeling Electrophysiological Coupling and Fusion between Human Mesenchymal Stem Cells and Cardiomyocytes," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-29, July.
    2. Miles Miller & Marc Hafner & Eduardo Sontag & Noah Davidsohn & Sairam Subramanian & Priscilla E M Purnick & Douglas Lauffenburger & Ron Weiss, 2012. "Modular Design of Artificial Tissue Homeostasis: Robust Control through Synthetic Cellular Heterogeneity," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-18, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:451:y:2008:i:7181:d:10.1038_nature06800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.