IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v449y2007i7165d10.1038_nature06215.html
   My bibliography  Save this article

Auxin transport is sufficient to generate a maximum and gradient guiding root growth

Author

Listed:
  • Verônica A. Grieneisen

    (Theoretical Biology and Bioinformatics,)

  • Jian Xu

    (Molecular Genetics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands)

  • Athanasius F. M. Marée

    (Theoretical Biology and Bioinformatics,)

  • Paulien Hogeweg

    (Theoretical Biology and Bioinformatics,)

  • Ben Scheres

    (Molecular Genetics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands)

Abstract

The plant growth regulator auxin controls cell identity, cell division and cell expansion. Auxin efflux facilitators (PINs) are associated with auxin maxima in distal regions of both shoots and roots. Here we model diffusion and PIN-facilitated auxin transport in and across cells within a structured root layout. In our model, the stable accumulation of auxin in a distal maximum emerges from the auxin flux pattern. We have experimentally tested model predictions of robustness and self-organization. Our model explains pattern formation and morphogenesis at timescales from seconds to weeks, and can be understood by conceptualizing the root as an ‘auxin capacitor’. A robust auxin gradient associated with the maximum, in combination with separable roles of auxin in cell division and cell expansion, is able to explain the formation, maintenance and growth of sharply bounded meristematic and elongation zones. Directional permeability and diffusion can fully account for stable auxin maxima and gradients that can instruct morphogenesis.

Suggested Citation

  • Verônica A. Grieneisen & Jian Xu & Athanasius F. M. Marée & Paulien Hogeweg & Ben Scheres, 2007. "Auxin transport is sufficient to generate a maximum and gradient guiding root growth," Nature, Nature, vol. 449(7165), pages 1008-1013, October.
  • Handle: RePEc:nat:nature:v:449:y:2007:i:7165:d:10.1038_nature06215
    DOI: 10.1038/nature06215
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature06215
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature06215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dirk De Vos & Kris Vissenberg & Jan Broeckhove & Gerrit T S Beemster, 2014. "Putting Theory to the Test: Which Regulatory Mechanisms Can Drive Realistic Growth of a Root?," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-19, October.
    2. Julien Moukhtar & Alain Trubuil & Katia Belcram & David Legland & Zhor Khadir & Aurélie Urbain & Jean-Christophe Palauqui & Philippe Andrey, 2019. "Cell geometry determines symmetric and asymmetric division plane selection in Arabidopsis early embryos," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-27, February.
    3. Patricio Pérez-Henríquez & Shingo Nagawa & Zhongchi Liu & Xue Pan & Marta Michniewicz & Wenxin Tang & Carolyn Rasmussen & Xinping Cui & Jaimie Norman & Lucia Strader & Zhenbiao Yang, 2025. "PIN2-mediated self-organizing transient auxin flow contributes to auxin maxima at the tip of Arabidopsis cotyledons," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    4. Jian Huang & Lei Zhao & Shikha Malik & Benjamin R. Gentile & Va Xiong & Tzahi Arazi & Heather A. Owen & Jiří Friml & Dazhong Zhao, 2022. "Specification of female germline by microRNA orchestrated auxin signaling in Arabidopsis," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Szymon Stoma & Mikael Lucas & Jérôme Chopard & Marianne Schaedel & Jan Traas & Christophe Godin, 2008. "Flux-Based Transport Enhancement as a Plausible Unifying Mechanism for Auxin Transport in Meristem Development," PLOS Computational Biology, Public Library of Science, vol. 4(10), pages 1-15, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:449:y:2007:i:7165:d:10.1038_nature06215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.