IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v443y2006i7110d10.1038_nature05099.html
   My bibliography  Save this article

Evolution of alternative transcriptional circuits with identical logic

Author

Listed:
  • Annie E. Tsong

    (Department of Biochemistry & Biophysics
    University of California San Francisco
    Immunology, University of California San Francisco
    University of California Berkeley, Lawrence Berkeley National Labs)

  • Brian B. Tuch

    (Department of Biochemistry & Biophysics
    University of California San Francisco
    Immunology, University of California San Francisco)

  • Hao Li

    (Department of Biochemistry & Biophysics)

  • Alexander D. Johnson

    (Department of Biochemistry & Biophysics
    University of California San Francisco
    Immunology, University of California San Francisco)

Abstract

Evolution of gene regulation is an important contributor to the variety of life. Here, we analyse the evolution of a combinatorial transcriptional circuit composed of sequence-specific DNA-binding proteins that are conserved among all eukaryotes. This circuit regulates mating in the ascomycete yeast lineage. We first identify a group of mating genes that was transcriptionally regulated by an activator in a fungal ancestor, but is now transcriptionally regulated by a repressor in modern bakers' yeast. Despite this change in regulatory mechanism, the logical output of the overall circuit remains the same. By examining the regulation of mating in modern yeasts that are related to different extents, we deduce specific, sequential changes in both cis- and trans-regulatory elements that constitute the transition from positive to negative regulation. These changes indicate specific mechanisms by which fitness barriers were traversed during the transition.

Suggested Citation

  • Annie E. Tsong & Brian B. Tuch & Hao Li & Alexander D. Johnson, 2006. "Evolution of alternative transcriptional circuits with identical logic," Nature, Nature, vol. 443(7110), pages 415-420, September.
  • Handle: RePEc:nat:nature:v:443:y:2006:i:7110:d:10.1038_nature05099
    DOI: 10.1038/nature05099
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature05099
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature05099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javier Santos-Moreno & Eve Tasiudi & Hadiastri Kusumawardhani & Joerg Stelling & Yolanda Schaerli, 2023. "Robustness and innovation in synthetic genotype networks," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Karel Janko & Jan Eisner & Petr Cigler & Tomáš Tichopád, 2024. "Unifying framework explaining how parental regulatory divergence can drive gene expression in hybrids and allopolyploids," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Krishnan, Arun & Tomita, Masaru & Giuliani, Alessandro, 2008. "Evolution of gene regulatory networks: Robustness as an emergent property of evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2170-2186.
    4. Iksoo Huh & Isabel Mendizabal & Taesung Park & Soojin V Yi, 2018. "Functional conservation of sequence determinants at rapidly evolving regulatory regions across mammals," PLOS Computational Biology, Public Library of Science, vol. 14(10), pages 1-21, October.
    5. Andreas Wagner, 2015. "Causal Drift, Robust Signaling, and Complex Disease," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-29, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:443:y:2006:i:7110:d:10.1038_nature05099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.