IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v442y2006i7100d10.1038_nature04969.html
   My bibliography  Save this article

Graphene-based composite materials

Author

Listed:
  • Sasha Stankovich

    (Department of Mechanical Engineering)

  • Dmitriy A. Dikin

    (Department of Mechanical Engineering)

  • Geoffrey H. B. Dommett

    (Department of Mechanical Engineering)

  • Kevin M. Kohlhaas

    (Department of Mechanical Engineering)

  • Eric J. Zimney

    (Department of Mechanical Engineering)

  • Eric A. Stach

    (Purdue University)

  • Richard D. Piner

    (Department of Mechanical Engineering)

  • SonBinh T. Nguyen

    (Northwestern University)

  • Rodney S. Ruoff

    (Department of Mechanical Engineering)

Abstract

Nanotubes unwrapped The remarkable mechanical properties of carbon nanotubes arise from the exceptional strength and stiffness of the atomically thin carbon sheets (graphene) from which they are formed. In contrast, bulk graphite, a polycrystalline material, has low fracture strength and tends to suffer failure either by delamination of graphene sheets or at grain boundaries between the crystals. Now Stankovich et al. have produced an inexpensive polymer-matrix composite by separating graphene sheets from graphite and chemically tuning them. The material contains dispersed graphene sheets and offers access to a broad range of useful thermal, electrical and mechanical properties.

Suggested Citation

  • Sasha Stankovich & Dmitriy A. Dikin & Geoffrey H. B. Dommett & Kevin M. Kohlhaas & Eric J. Zimney & Eric A. Stach & Richard D. Piner & SonBinh T. Nguyen & Rodney S. Ruoff, 2006. "Graphene-based composite materials," Nature, Nature, vol. 442(7100), pages 282-286, July.
  • Handle: RePEc:nat:nature:v:442:y:2006:i:7100:d:10.1038_nature04969
    DOI: 10.1038/nature04969
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature04969
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature04969?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Changhui & Qiao, Yu & Du, Peixing & Zhang, Jiahao & Zhao, Jiateng & Liu, Chenzhen & Huo, Yutao & Qi, Cong & Rao, Zhonghao & Yan, Yuying, 2021. "Recent advances of nanofluids in micro/nano scale energy transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Qian Dang & Haiping Lin & Zhenglong Fan & Lu Ma & Qi Shao & Yujin Ji & Fangfang Zheng & Shize Geng & Shi-Ze Yang & Ningning Kong & Wenxiang Zhu & Youyong Li & Fan Liao & Xiaoqing Huang & Mingwang Shao, 2021. "Iridium metallene oxide for acidic oxygen evolution catalysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Han, Chaoling & Chen, Zhenqian, 2021. "Study on the synergism of thermal transport and electrochemical of PEMFC based on N, P co-doped graphene substrate electrode," Energy, Elsevier, vol. 214(C).
    4. Zan Li & Yin Zhang & Zhibo Zhang & Yi-Tao Cui & Qiang Guo & Pan Liu & Shenbao Jin & Gang Sha & Kunqing Ding & Zhiqiang Li & Tongxiang Fan & Herbert M. Urbassek & Qian Yu & Ting Zhu & Di Zhang & Y. Mor, 2022. "A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Dasari, Bhagya Lakshmi & Nouri, Jamshid M. & Brabazon, Dermot & Naher, Sumsun, 2017. "Graphene and derivatives – Synthesis techniques, properties and their energy applications," Energy, Elsevier, vol. 140(P1), pages 766-778.
    6. Chang, Chih-Chang & Huang, Wei-Hao & Mai, Van-Phung & Tsai, Jia-Shiuan & Yang, Ruey-Jen, 2021. "Experimental investigation into energy harvesting of NaCl droplet flow over graphene supported by silicon dioxide," Energy, Elsevier, vol. 229(C).
    7. Pandey, Mayank & Deshmukh, Kalim & Raman, Akhila & Asok, Aparna & Appukuttan, Saritha & Suman, G.R., 2024. "Prospects of MXene and graphene for energy storage and conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    8. Ramachandran, Rajendran & Saranya, Murugan & Velmurugan, Venugopal & Raghupathy, Bala P.C. & Jeong, Soon Kwan & Grace, Andrews Nirmala, 2015. "Effect of reducing agent on graphene synthesis and its influence on charge storage towards supercapacitor applications," Applied Energy, Elsevier, vol. 153(C), pages 22-31.
    9. Tasleem, Sehar & Tahir, Muhammad, 2020. "Current trends in strategies to improve photocatalytic performance of perovskites materials for solar to hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    10. Zahra Ebrahim Nataj & Youming Xu & Dylan Wright & Jonas O. Brown & Jivtesh Garg & Xi Chen & Fariborz Kargar & Alexander A. Balandin, 2023. "Cryogenic characteristics of graphene composites—evolution from thermal conductors to thermal insulators," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Zhang, Yang & Zhang, L.W. & Liew, K.M. & Yu, J.L., 2015. "Transient analysis of single-layered graphene sheet using the kp-Ritz method and nonlocal elasticity theory," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 489-501.
    12. Wang, Tianyu & Tian, Shouceng & Li, Gensheng & Zhang, Liyuan & Sheng, Mao & Ren, Wenxi, 2021. "Molecular simulation of gas adsorption in shale nanopores: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    13. Hung, Kai-Hsiang & Chan, Chin-Hao & Wang, Hong-Wen, 2014. "Flexible TCO-free counter electrode for dye-sensitized solar cells using graphene nanosheets from a Ti–Ti(III) acid solution," Renewable Energy, Elsevier, vol. 66(C), pages 150-158.
    14. Nuria Novas & Alfredo Alcayde & Isabel Robalo & Francisco Manzano-Agugliaro & Francisco G. Montoya, 2020. "Energies and Its Worldwide Research," Energies, MDPI, vol. 13(24), pages 1-41, December.
    15. Muzaffar, Aqib & Ahamed, M. Basheer & Hussain, Chaudhery Mustansar, 2024. "Green supercapacitors: Latest developments and perspectives in the pursuit of sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    16. Xiaoqian Ma & Nuo Lin & Qing Yang & Peifei Liu & Haizhen Ding & Mengjiao Xu & Fangfang Ren & Zhiyang Shen & Ke Hu & Shanshan Meng & Hongmin Chen, 2024. "Biodegradable copper-iodide clusters modulate mitochondrial function and suppress tumor growth under ultralow-dose X-ray irradiation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Wang, Yingli & Duan, Jialong & Zhao, Yuanyuan & He, Benlin & Tang, Qunwei, 2018. "Harvest rain energy by polyaniline-graphene composite films," Renewable Energy, Elsevier, vol. 125(C), pages 995-1002.
    18. Luo, Dan & Ding, Hong & Guo, Ting & Li, Xiangling & Song, Tianshun & Xie, Jingjing, 2023. "Self-assembly of graphene oxide and Shewanella oneidensis MR-1 formed a conductive bio-abiotic composite for enhancing microbial electrosynthesis performance," Renewable Energy, Elsevier, vol. 215(C).
    19. Taheri Najafabadi, Amin, 2015. "Emerging applications of graphene and its derivatives in carbon capture and conversion: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1515-1545.
    20. Amelia Carolina Sparavigna, 2024. "Graphene, Graphene Oxide and Carbon Nanotubes in Raman Spectroscopy," International Journal of Sciences, Office ijSciences, vol. 13(07), pages 1-26, July.
    21. Ding, Zhixiong & Wu, Wei & Leung, Michael, 2021. "Advanced/hybrid thermal energy storage technology: material, cycle, system and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    22. Wu, Chia-Shing & Chang, Ting-Wei & Teng, Hsisheng & Lee, Yuh-Lang, 2016. "High performance carbon black counter electrodes for dye-sensitized solar cells," Energy, Elsevier, vol. 115(P1), pages 513-518.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:442:y:2006:i:7100:d:10.1038_nature04969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.