IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v441y2006i7089d10.1038_nature04539.html
   My bibliography  Save this article

Climate change and population declines in a long-distance migratory bird

Author

Listed:
  • Christiaan Both

    (Netherlands Institute of Ecology (NIOO-KNAW)
    University of Groningen)

  • Sandra Bouwhuis

    (Netherlands Institute of Ecology (NIOO-KNAW)
    University of Groningen
    University of Oxford)

  • C. M. Lessells

    (Netherlands Institute of Ecology (NIOO-KNAW))

  • Marcel E. Visser

    (Netherlands Institute of Ecology (NIOO-KNAW))

Abstract

Timing is life and death The possible ecological effects of climate change are often in the news, as is the matter of whether the potential impact can be predicted. New work on a migratory bird, the pied flycatcher, takes things a stage further by showing how a climate-related population decline was actually caused. Timing is key. Over the past 17 years flycatchers declined strongly in areas where caterpillar numbers (food for the nestlings) peak early, but in areas with a late food peak there was no decline. The young birds arrive too late where caterpillars have responded to early warmth. Mistiming like this is probably a common consequence of climate change, and may be a major factor in the decline of many long-distance migratory bird species.

Suggested Citation

  • Christiaan Both & Sandra Bouwhuis & C. M. Lessells & Marcel E. Visser, 2006. "Climate change and population declines in a long-distance migratory bird," Nature, Nature, vol. 441(7089), pages 81-83, May.
  • Handle: RePEc:nat:nature:v:441:y:2006:i:7089:d:10.1038_nature04539
    DOI: 10.1038/nature04539
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature04539
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature04539?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mats Björklund & Esa Ranta & Veijo Kaitala & Lars A Bach & Per Lundberg & Nils Chr Stenseth, 2009. "Quantitative Trait Evolution and Environmental Change," PLOS ONE, Public Library of Science, vol. 4(2), pages 1-10, February.
    2. Anne Goodenough & Adam Hart, 2013. "Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism," Climatic Change, Springer, vol. 118(3), pages 659-669, June.
    3. Sachin Kumar & Tejdeep Kaur Kler & Gurkirat Singh Sekhon & Tanvi Sahni, 2024. "Impacts on avian migratory patterns due to climate change and hormonal disruption: a review," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(7), pages 1-23, October.
    4. Campos, Daniel & Llebot, Josep E. & Méndez, Vicenç, 2008. "Limited resources and evolutionary learning may help to understand the mistimed reproduction in birds caused by climate change," Theoretical Population Biology, Elsevier, vol. 74(1), pages 16-21.
    5. Lucie Kuczynski & Mathieu Chevalier & Pascal Laffaille & Marion Legrand & Gaël Grenouillet, 2017. "Indirect effect of temperature on fish population abundances through phenological changes," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-13, April.
    6. Tian, Huaiyu & Zhou, Sen & Dong, Lu & Van Boeckel, Thomas P. & Pei, Yao & Wu, Qizhong & Yuan, Wenping & Guo, Yan & Huang, Shanqian & Chen, Wenhuan & Lu, Xueliang & Liu, Zhen & Bai, Yuqi & Yue, Tianxia, 2015. "Climate change suggests a shift of H5N1 risk in migratory birds," Ecological Modelling, Elsevier, vol. 306(C), pages 6-15.
    7. Minke B. W. Langenhof & Jan Komdeur, 2013. "Coping with Change: A Closer Look at the Underlying Attributes of Change and the Individual Response to Unstable Environments," Sustainability, MDPI, vol. 5(5), pages 1-25, April.
    8. Conor C. Taff & J. Ryan. Shipley, 2023. "Inconsistent shifts in warming and temperature variability are linked to reduced avian fitness," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Donohue, John G. & Piiroinen, Petri T., 2015. "Mathematical modelling of seasonal migration with applications to climate change," Ecological Modelling, Elsevier, vol. 299(C), pages 79-94.
    10. David S Wilcove & Martin Wikelski, 2008. "Going, Going, Gone: Is Animal Migration Disappearing," PLOS Biology, Public Library of Science, vol. 6(7), pages 1-4, July.
    11. N. Rodenhouse & S. Matthews & K. McFarland & J. Lambert & L. Iverson & A. Prasad & T. Sillett & R. Holmes, 2008. "Potential effects of climate change on birds of the Northeast," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(5), pages 517-540, June.
    12. Anna C. Ortega & Ellen O. Aikens & Jerod A. Merkle & Kevin L. Monteith & Matthew J. Kauffman, 2023. "Migrating mule deer compensate en route for phenological mismatches," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Jaroslav Koleček & Peter Adamík & Jiří Reif, 2020. "Shifts in migration phenology under climate change: temperature vs. abundance effects in birds," Climatic Change, Springer, vol. 159(2), pages 177-194, March.
    14. Nater, Chloé Rebecca & Burgess, Malcolm D. & Coffey, Peter & Harris, Bob & Lander, Frank & Price, David & Reed, Mike & Robinson, Rob, 2022. "Multi-population analysis reveals spatial consistency in drivers of population dynamics of a declining migratory bird," EcoEvoRxiv 5ru9f, Center for Open Science.
    15. Aagaard, Kevin J. & Thogmartin, Wayne E. & Lonsdorf, Eric V., 2018. "Temperature-influenced energetics model for migrating waterfowl," Ecological Modelling, Elsevier, vol. 378(C), pages 46-58.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:441:y:2006:i:7089:d:10.1038_nature04539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.