IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v439y2006i7076d10.1038_nature04377.html
   My bibliography  Save this article

Functional genomics reveals genes involved in protein secretion and Golgi organization

Author

Listed:
  • Frederic Bard

    (University of California San Diego)

  • Laetitia Casano

    (University of California San Diego)

  • Arrate Mallabiabarrena

    (University of California San Diego)

  • Erin Wallace

    (University of California San Diego)

  • Kota Saito

    (University of California San Diego)

  • Hitoshi Kitayama

    (University of California San Diego)

  • Gianni Guizzunti

    (University of California San Diego)

  • Yue Hu

    (University of California San Diego)

  • Franz Wendler

    (the Ridgeway Mill Hill)

  • Ramanuj DasGupta

    (Harvard Medical School)

  • Norbert Perrimon

    (Harvard Medical School)

  • Vivek Malhotra

    (University of California San Diego)

Abstract

Yeast genetics and in vitro biochemical analysis have identified numerous genes involved in protein secretion1,2. As compared with yeast, however, the metazoan secretory pathway is more complex and many mechanisms that regulate organization of the Golgi apparatus remain poorly characterized. We performed a genome-wide RNA-mediated interference screen in a Drosophila cell line to identify genes required for constitutive protein secretion. We then classified the genes on the basis of the effect of their depletion on organization of the Golgi membranes. Here we show that depletion of class A genes redistributes Golgi membranes into the endoplasmic reticulum, depletion of class B genes leads to Golgi fragmentation, depletion of class C genes leads to aggregation of Golgi membranes, and depletion of class D genes causes no obvious change. Of the 20 new gene products characterized so far, several localize to the Golgi membranes and the endoplasmic reticulum.

Suggested Citation

  • Frederic Bard & Laetitia Casano & Arrate Mallabiabarrena & Erin Wallace & Kota Saito & Hitoshi Kitayama & Gianni Guizzunti & Yue Hu & Franz Wendler & Ramanuj DasGupta & Norbert Perrimon & Vivek Malhot, 2006. "Functional genomics reveals genes involved in protein secretion and Golgi organization," Nature, Nature, vol. 439(7076), pages 604-607, February.
  • Handle: RePEc:nat:nature:v:439:y:2006:i:7076:d:10.1038_nature04377
    DOI: 10.1038/nature04377
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature04377
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature04377?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhi Feng & Shengnan Liu & Ming Su & Chunyu Song & Chenyu Lin & Fangying Zhao & Yang Li & Xianyan Zeng & Yong Zhu & Yu Hou & Chunguang Ren & Huan Zhang & Ping Yi & Yong Ji & Chao Wang & Hongtao Li & Mi, 2024. "TANGO6 regulates cell proliferation via COPI vesicle-mediated RPB2 nuclear entry," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Ishier Raote & Ann-Helen Rosendahl & Hanna-Maria Häkkinen & Carina Vibe & Ismail Küçükaylak & Mugdha Sawant & Lena Keufgens & Pia Frommelt & Kai Halwas & Katrina Broadbent & Marina Cunquero & Gustavo , 2024. "TANGO1 inhibitors reduce collagen secretion and limit tissue scarring," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Kosuke Kamemura & Rio Kozono & Mizuki Tando & Misako Okumura & Daisuke Koga & Satoshi Kusumi & Kanako Tamai & Aoi Okumura & Sayaka Sekine & Daichi Kamiyama & Takahiro Chihara, 2024. "Secretion of endoplasmic reticulum protein VAPB/ALS8 requires topological inversion," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:439:y:2006:i:7076:d:10.1038_nature04377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.