IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v438y2005i7071d10.1038_nature04290.html
   My bibliography  Save this article

Double chromodomains cooperate to recognize the methylated histone H3 tail

Author

Listed:
  • John F. Flanagan

    (Department of Biochemistry and Molecular Genetics)

  • Li-Zhi Mi

    (Department of Pharmacology
    Harvard Medical School and The CBR Institute for Biomedical Research, Inc.)

  • Maksymilian Chruszcz

    (University of Virginia Health System)

  • Marcin Cymborowski

    (University of Virginia Health System)

  • Katrina L. Clines

    (Department of Biochemistry and Molecular Genetics)

  • Youngchang Kim

    (Argonne National Laboratory, Biosciences Division/Structural Biology Center)

  • Wladek Minor

    (University of Virginia Health System)

  • Fraydoon Rastinejad

    (Department of Biochemistry and Molecular Genetics
    Department of Pharmacology)

  • Sepideh Khorasanizadeh

    (Department of Biochemistry and Molecular Genetics)

Abstract

Chromodomains are modules implicated in the recognition of lysine-methylated histone tails and nucleic acids1,2. CHD (for chromo-ATPase/helicase-DNA-binding) proteins regulate ATP-dependent nucleosome assembly and mobilization through their conserved double chromodomains and SWI2/SNF2 helicase/ATPase domain3,4,5. The Drosophila CHD1 localizes to the interb ands and puffs of the polytene chromosomes, which are classic sites of transcriptional activity6. Other CHD isoforms (CHD3/4 or Mi-2) are important for nucleosome remodelling in histone deacetylase complexes7,8. Deletion of chromodomains impairs nucleosome binding and remodelling by CHD proteins4. Here we describe the structure of the tandem arrangement of the human CHD1 chromodomains, and its interactions with histone tails. Unlike HP1 and Polycomb proteins that use single chromodomains to bind to their respective methylated histone H3 tails, the two chromodomains of CHD1 cooperate to interact with one methylated H3 tail. We show that the human CHD1 double chromodomains target the lysine 4-methylated histone H3 tail (H3K4me), a hallmark of active chromatin9. Methylammonium recognition involves two aromatic residues, not the three-residue aromatic cage used by chromodomains of HP1 and Polycomb proteins10,11,12,13. Furthermore, unique inserts within chromodomain 1 of CHD1 block the expected site of H3 tail binding seen in HP1 and Polycomb, instead directing H3 binding to a groove at the inter-chromodomain junction.

Suggested Citation

  • John F. Flanagan & Li-Zhi Mi & Maksymilian Chruszcz & Marcin Cymborowski & Katrina L. Clines & Youngchang Kim & Wladek Minor & Fraydoon Rastinejad & Sepideh Khorasanizadeh, 2005. "Double chromodomains cooperate to recognize the methylated histone H3 tail," Nature, Nature, vol. 438(7071), pages 1181-1185, December.
  • Handle: RePEc:nat:nature:v:438:y:2005:i:7071:d:10.1038_nature04290
    DOI: 10.1038/nature04290
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature04290
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature04290?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caojie Liu & Qiuchan Xiong & Qiwen Li & Weimin Lin & Shuang Jiang & Danting Zhang & Yuan Wang & Xiaobo Duan & Ping Gong & Ning Kang, 2022. "CHD7 regulates bone-fat balance by suppressing PPAR-γ signaling," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Guillermo Abascal-Palacios & Laura Jochem & Carlos Pla-Prats & Fabienne Beuron & Alessandro Vannini, 2021. "Structural basis of Ty3 retrotransposon integration at RNA Polymerase III-transcribed genes," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Xinhao Hou & Mingjing Xu & Chengming Zhu & Jianing Gao & Meili Li & Xiangyang Chen & Cheng Sun & Björn Nashan & Jianye Zang & Ying Zhou & Shouhong Guang & Xuezhu Feng, 2023. "Systematic characterization of chromodomain proteins reveals an H3K9me1/2 reader regulating aging in C. elegans," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Corina Maritz & Reihaneh Khaleghi & Michelle N. Yancoskie & Sarah Diethelm & Sonja Brülisauer & Natalia Santos Ferreira & Yang Jiang & Shana J. Sturla & Hanspeter Naegeli, 2023. "ASH1L-MRG15 methyltransferase deposits H3K4me3 and FACT for damage verification in nucleotide excision repair," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Yichen Zhong & Hakimeh Moghaddas Sani & Bishnu P. Paudel & Jason K. K. Low & Ana P. G. Silva & Stefan Mueller & Chandrika Deshpande & Santosh Panjikar & Xavier J. Reid & Max J. Bedward & Antoine M. Oi, 2022. "The role of auxiliary domains in modulating CHD4 activity suggests mechanistic commonality between enzyme families," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Joke J F A van Vugt & Martijn de Jager & Magdalena Murawska & Alexander Brehm & John van Noort & Colin Logie, 2009. "Multiple Aspects of ATP-Dependent Nucleosome Translocation by RSC and Mi-2 Are Directed by the Underlying DNA Sequence," PLOS ONE, Public Library of Science, vol. 4(7), pages 1-14, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:438:y:2005:i:7071:d:10.1038_nature04290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.