IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v437y2005i7061d10.1038_nature04124.html
   My bibliography  Save this article

Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance

Author

Listed:
  • Robert L. Badzey

    (Boston University)

  • Pritiraj Mohanty

    (Boston University)

Abstract

Stochastic resonance1,2 is a counterintuitive concept: the addition of noise to a noisy system induces coherent amplification of its response. First suggested as a mechanism for the cyclic recurrence of ice ages, stochastic resonance has been seen in a wide variety of macroscopic physical systems: bistable ring lasers3, superconducting quantum interference devices4,5 (SQUIDs), magnetoelastic ribbons6 and neurophysiological systems such as the receptors in crickets7 and crayfish8. Although fundamentally important as a mechanism of coherent signal amplification, stochastic resonance has yet to be observed in nanoscale systems. Here we report the observation of stochastic resonance in bistable nanomechanical silicon oscillators. Our nanomechanical systems consist of beams that are clamped at each end and driven into transverse oscillation with the use of a radiofrequency source. Modulation of the source induces controllable switching of the beams between two stable, distinct states. We observe that the addition of white noise causes a marked amplification of the signal strength. Stochastic resonance in nanomechanical systems could have a function in the realization of controllable high-speed nanomechanical memory cells, and paves the way for exploring macroscopic quantum coherence and tunnelling.

Suggested Citation

  • Robert L. Badzey & Pritiraj Mohanty, 2005. "Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance," Nature, Nature, vol. 437(7061), pages 995-998, October.
  • Handle: RePEc:nat:nature:v:437:y:2005:i:7061:d:10.1038_nature04124
    DOI: 10.1038/nature04124
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature04124
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature04124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ueda, Michihito, 2010. "Improvement of signal-to-noise ratio by stochastic resonance in sigmoid function threshold systems, demonstrated using a CMOS inverter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 1978-1985.
    2. Jiang, Jiahao & Li, Kaiyuan & Guo, Wei & Du, Luchun, 2021. "Energetic and entropic vibrational resonance," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Qiao, Zijian & Shu, Xuedao, 2021. "Coupled neurons with multi-objective optimization benefit incipient fault identification of machinery," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. Gong, Xulu & Xu, Pengfei & Liu, Di & Zhou, Biliu, 2023. "Stochastic resonance of multi-stable energy harvesting system with high-order stiffness from rotational environment," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    5. Duan, Fabing & Abbott, Derek, 2007. "Binary modulated signal detection in a bistable receiver with stochastic resonance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 173-190.
    6. Vocca, Helios & Neri, Igor & Travasso, Flavio & Gammaitoni, Luca, 2012. "Kinetic energy harvesting with bistable oscillators," Applied Energy, Elsevier, vol. 97(C), pages 771-776.
    7. Xie, Tianting & Ji, Yuandong & Yang, Zhongshan & Duan, Fabing & Abbott, Derek, 2023. "Optimal added noise for minimizing distortion in quantizer-array linear estimation," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    8. Cheng, Guanghui & Liu, Weidan & Gui, Rong & Yao, Yuangen, 2020. "Sine-Wiener bounded noise-induced logical stochastic resonance in a two-well potential system," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:437:y:2005:i:7061:d:10.1038_nature04124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.