IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v376y2007icp173-190.html
   My bibliography  Save this article

Binary modulated signal detection in a bistable receiver with stochastic resonance

Author

Listed:
  • Duan, Fabing
  • Abbott, Derek

Abstract

The archetypal bistable system can act as a nonlinear receiver for detecting binary signals modulated by amplitude, frequency, or phase. The introduction of noise enhances signal detection for a certain range of noise intensity, which is ascribed to non-conventional stochastic resonance (SR) phenomena, such as residual aperiodic SR and short-time SR. For the first time, we unify binary modulated signal detection from the point of view of an approximate probability density model. We develop both theoretical and numerical analyses of the receiver performance for each type of modulated signal. The optimization of receiver parameters and comparisons of the optimal bistable receiver versus the linear matched filter are also investigated. An interesting result is that the probability density model enables us to explore the SR range of noise intensity and the optimally-tuned bistable receiver theoretically, which may play a prominent role for nonlinear systems performing in noisy conditions.

Suggested Citation

  • Duan, Fabing & Abbott, Derek, 2007. "Binary modulated signal detection in a bistable receiver with stochastic resonance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 173-190.
  • Handle: RePEc:eee:phsmap:v:376:y:2007:i:c:p:173-190
    DOI: 10.1016/j.physa.2006.10.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106011125
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.10.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert L. Badzey & Pritiraj Mohanty, 2005. "Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance," Nature, Nature, vol. 437(7061), pages 995-998, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gillard, Nicolas & Belin, Etienne & Chapeau-Blondeau, François, 2018. "Enhancing qubit information with quantum thermal noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 219-230.
    2. Usama, B.I. & Morfu, S. & Marquie, P., 2021. "Vibrational resonance and ghost-vibrational resonance occurrence in Chua’s circuit models with specific nonlinearities," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    3. Usama, B.I. & Morfu, S. & Marquié, P., 2019. "Numerical analyses of the vibrational resonance occurrence in a nonlinear dissipative system," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 31-37.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiao, Zijian & Shu, Xuedao, 2021. "Coupled neurons with multi-objective optimization benefit incipient fault identification of machinery," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    2. Gong, Xulu & Xu, Pengfei & Liu, Di & Zhou, Biliu, 2023. "Stochastic resonance of multi-stable energy harvesting system with high-order stiffness from rotational environment," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Vocca, Helios & Neri, Igor & Travasso, Flavio & Gammaitoni, Luca, 2012. "Kinetic energy harvesting with bistable oscillators," Applied Energy, Elsevier, vol. 97(C), pages 771-776.
    4. Ueda, Michihito, 2010. "Improvement of signal-to-noise ratio by stochastic resonance in sigmoid function threshold systems, demonstrated using a CMOS inverter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 1978-1985.
    5. Jiang, Jiahao & Li, Kaiyuan & Guo, Wei & Du, Luchun, 2021. "Energetic and entropic vibrational resonance," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Xie, Tianting & Ji, Yuandong & Yang, Zhongshan & Duan, Fabing & Abbott, Derek, 2023. "Optimal added noise for minimizing distortion in quantizer-array linear estimation," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    7. Cheng, Guanghui & Liu, Weidan & Gui, Rong & Yao, Yuangen, 2020. "Sine-Wiener bounded noise-induced logical stochastic resonance in a two-well potential system," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:376:y:2007:i:c:p:173-190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.